PHYSICAL REVIEW E, VOLUME 64, 066123
Generalized empty-interval method applied to a class of one-dimensional stochastic models
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In this work we study, on a finite and periodic lattice, a class of one-dimensfbimblecular and single-
specie} reaction-diffusion models that cannot be mapped onto free-fermion models. We extend the conven-
tional empty-interval method, also called interparticle distribution funcfi®®F) method, by introducing a
string function, which is simply related to relevant physical quantities. As an illustration, we specifically
consider a model that cannot be solved directly by the conventional IPDF method and that can be viewed as a
generalization of thesoter model and/or as aepidemicmodel. We also consider theversiblediffusion-
coagulation model with input of particles and determine other reaction-diffusion models that can be mapped
onto the latter via suitablsimilarity transformationsFinally we study the problem of the propagation of a
wave front from an inhomogeneous initial configuration and note that the mean-field scenario predicted by
Fisher’s equation is not valid for the one-dimensiofralcroscopi¢ models under consideration.
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[. INTRODUCTION of one-dimensional stochastic models that cannot be mapped
onto free-fermion systems. In fact much attention has been
Reaction-diffusion modelRD) play an important role in  given to free-fermion systems in various contekisingfer-
the description of classical interacting many-particle non-mionicalgebra5] or via thetraditional IPDF method, in the
equilibrium systems and have been extensively investigategontinuum limit[9,10] as well as on discrete latti¢@1,13).
in the last decaddl1,2]. Often these systems have beenTh? situation is different for the models considered here, for
treated by mean-field techniqués.g., rate equationghat  Which only a few exact results are known. .
give rise to nonlinear partial differential equatiofssich as, ~_1he paper is organized as follows. In the next section we
e.g., the Fisher equatiof8]). The latter represent difficult Priefly review the formalism that we employ. In Sec. Ill we
mathematical problems: e.g., the Fisher equation cannot, ifftroduce the string function, which is the key to our analysis
general, be solved exactly. The mean-field methods can a@._nd Qetermlne the constraints necessary to ha_lve solvable
curately describe the behavior of RD systemsigher di-  Situations. In Sec. IV we solve the _gengral equations of mo-
mensionswhere the correlations do not dramatically changefion for the string functions of reac_tlon—dlffusmn models that
the physics of the models. However, in one spatial dimensiof@nnot be mapped onto free-fermion systems. The latter pro-
where the fluctuations play a crucial role, these mean-fieldyides the exact expression of the density and the instanta-
treatments fail. In this sense, a satisfactory understanding df€ous nearest-neighb@wo-poin correlation function. We
RD models in lower dimensions requirexact solutions also present an approximative, and, recursive scher_ne to
which are scarce. In some cases, however, some RD modéf@mpute the (othey instantaneous  two-point correlation
are known to be solvable. These cases can essentially Banctions. In Sec. V, we specifically consider a model with
classified into four categorieé) models for which the equa- b_ranchlng and coz_;\gulatlon reactions that cannot be solved
tions of motion of correlation functions are clospdl; (i)  directly by the traditional IPDF method. In Sec. VI, we solve
the free-fermionmodels[5] (or systems that can be mapped & reve_rS|bIe diffusion-coagulation model with external input
onto the latter, seg2,6]): (i) some other one-dimensional of partlcl'es. In Sep. VII, we take advantage of the re_sultg o_f
RD models can be solved by tmeatrix ansatzmethod[7] the_z previous section to solve other related models via simi-
first introduced to study the steady states of the asymmetri@rity transformations. In Sec. VIl we study, for the models
exclusion process and which has been extended to other mufitroduced and solved in Secs. V and VI, the problem of the
tispecies RD models where the total number of particles i§ropagation of a wave front starting from an inhomogeneous
conserved, a dynamical version of the matrix angizhas |n_|t|al state and obser\{e that the _mean—flel_d scenario pre-
also been proposed to study the dynamical properties of thdicted byF|sher’s _equat|or[3,14,.13 is not valid at the mi-
models for which the equations are clos@mh periodic as Croscopic level. Finally, Sec. IX is devoted to the conclusion.
well as open chains(iv) some other one-dimensional mod-
els can be solved by the empty-interval method, also called
the interparticle distribution functioiPDF) method[9-12], Il. THE FORMALISM
first introduced for the study of the diffusion-coagulation Before generalizing the IPDF method, it is useful to
model. The solution of various one-dimensional RD modelsriefly review the so-calledtochastic Hamiltoniarformal-
have been obtained from the diffusion-coagulation model vidsm .
similarity transformation$2,13]. It has been established that It is known that models of stochastic hard-core particles
the latter solvable models correspond to free-fermion sysare soluble on some manifold on which the equations of
tems[2]. motion of their correlation functions clo$é]. In this work,
The purpose of this work is to present a generalization ofve concentrate on one-dimensional bimolecular single-
the IPDF method and to apply this technique to solve a classpecies reaction-diffusion systems.
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Consider a periodic chain with sites(labeled from 1 to For single-species bimolecular processes, with the nota-
L). On the lattice, local bimolecular reactions betweentions
single-species particled, with a hard core, take place. Each

site can be emptydenoted by the symbol 0) or occupied at A15F8<1)+Fc1>3, BlEF%Jrr}é—rgé—ré}),
most by a particle of typed denoted in the following by the 00 . w10 . 01 . 11
index 1 . The reactions occurring on the sifjesdj+1 are Ci=lo1t o1+ oo+ Top,
specified by the transition rates, which here are assumed to 01 11 100 . 10
be site dependentccording tol' 5, where D;=C;—(I'jgt gty +T13),

@,8,7,6=01:V (@,B)#(7,0), T13: a+p—y+s. A=T50+ 55, Ba=Tg2+T51—T50-Tg5,
Probability conservation implies Co=T00+ T35+ T56+ 55,

» D,=Cp— (Fog+ T+ I35+ 111), @
rf=— 3 Tgf andl=0,V (@p)#(7,0). | |
(a,p)#(a’,B’) the closure constraints are the followify:

For example, the rat€19 corresponds to the reactiod.A D,=0=T30+ 55— (T4 T =T+ T51— (I'99+T%%),
—AZ andTii=—(I19+1%1+199).

The state of the system is represented by the|Rét)) D1=0=>F8(1)+ rgé—(rg‘{wig)=r23+r}g—(r82+ rég),
=3 P({n},t)[{n}), where the sum runs over theé 2on-
figurations. At sitei the local state is specified by the ket @)
[n;)=(10)" if the sitei is empty andn;)=(01)" if the site . . .

i is occupied by a particle of typg(1) . with the help of the relationshigg],

Itis by now well established that a master equation can be _ /, 4 —A.+B.(n —CAnS 4D N
rewritten formally as an imaginary time Schinger equa- (NHm-1m) = A1+ Br(Mm-1) = Co(Mm) D1 Nin- 1M,
tion: (a/dt)|P(t))=—H|P(t)), whereH is the stochastic _ /4 H — A+ Bo(n o+ Dolnen
Hamiltonian that governs the dynamics of the system. In (NmHim.m 1) = Ao Bo(Mm: 1) = Coftm) + Dol )-
general, it is neither Hermitian nor normal. Its construction 3
from the master equation is a standard procedsee, e.g.,
[1,2]) The evolution operata =EjL:1Hj,j+1 acts locally on
two adjacent sites, with

The equation of motion of the density at siteis (on a
periodic chain

d d -
oo Tor Tio T2 Fr(nm (D= g7 (xInme™MP(0)) = As+ Az+ By(nm_1)(1)
rgs Tor I'fe I'fi
, +By(n t) = (C1+Co)(ny)(t
ri0 i pio o 2{Nm+ ) (1) = (C1+ Co){(Np) (1)

I‘éé I‘éi ]“%é ]“ﬁ +D (N 1N (1) + DNy 1) (). (4)

—Hj 1=

. . In order to illustrate the physical meaning of the models
where the same notations as in Ref#,16,17 have been gy died in this work, let us consider the latter at the mean-

used. Probability conservation implies that each column gl |evel (in the continuum limit, i.e., we assume first

the above represerltatlon _sums Up- to Zer(?; <nx(t)>_>pMF(Xat) and <nxnxil>(t)2[pMF(th)]2- At this
Theleft vacuum(|, which is defined asy|==}({n}[,  level of approximation, we noteee Sec. VI|I that the equa-

locally has the representatiofy|=(11)®(11) with the tion of motiqn (4_) of _somemicroscppicreaction—diffusion

property(}}|Hj'j+1:0. models studied in this work, provided thBt; <0 andD,

Below we shall assume an initial std4f(0)) and inves- <0, is & nonlinear partial-differential equation of Fisher type
tigate the expectation value of an opera@r(observables [3.15,14,
such as density, efc{O)(t)=(x|Oe "|P(0)). For general 72
s-species bimolecular reaction-diffusion systems, there ar€ } _(x t)=B—p,,c(x,t) +Kipume(X,t) — Ko pup (X, 1) ]2
(s+1)* possible rates that have to fulfill the 1)? prob- otPMF ax2MF LPME 2LPwE
ability conservation constraints. Thus genesalpecies bi- (5)
molecular reaction-diffusion systems are characterized by  _
(s+1)*—(s+1)? independent parametefd6,17. If one  With pyr(X,t)=pue(X,t)—¢. When A;=A,=A, B;=B,
imposes on these parametess 2ppropriate constraints, the =B, C;=C,=C, and D;=D,=D<0, we have D¢
equation of motion of correlation functions close and the=(C—B)+ \/(B—C)2—4AD, klsz\/(B—C)2—4AD>O,
system is formally soluble in arbitrary dimensions. Here, wewhich denotes the constant describing the growth knd
focus on the case=1, and so we have 164=12 indepen- =-2D>0 is the constant describing the saturation accord-
dent rates and two closure constraints. ing to the local dynamic§3,15,14.
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The Fisher equatiofb) admits two homogeneous steady investigated in Sec. VII. For&x<y<x+L, the equation of
states, namelyye(X, %) =pne(*) =k, /k,, which is stable, motion of S, ,(t) reads
and another unstable steady statgi()=0.

Although the Fisher equatiai®) cannot be solved exactly,
itis known[15,14] that the approach towards the steady state

d
. . ~ msx,y(t):_<(a_bnx)Hx—l,x(a_bnx+1)'"
from inhomogeneous initial states[e.g., pme(X,0)

=(kq1/k5)O(Xo—X), where®(x')=1 if x'>0 a2d®(x’) X (a—bn,_1))(t)—((a—bn,)

=0 otherwisg is characterized by avave fronf pye(X,t)

=f(x—ct), propagating with a celeritg=2k,B and sat- X(a=bngiq)---(@=bny_)Hy 1)(1)
isfying the nonlinear differential equation y-2

—]ZX {((a—bny(a—bny,q)---

d? X(a—bny_1)H;j . 1)(1). (7)

d
Bd—zzf(z)+cd—zf(z)+klf(z)—kz[f(z)]2=0[15].

If the following five constraints are fulfilled, the dynamics of
S, (1) is described by a closed hierarchy of equations as
In this work we obtain the exact expression for the densityfollows:

from theN-body description of some reaction-diffusion mod-

els (on finite and periodic lattige for whichD,;=D,# 0 and

for which, the mean-field description in the continuum limit (1) ab;=—bBy;

is given by a nonlinear partial-differential equation of the

Fisher type(5). Therefore, with help of thémicrocopig ex-

act results obtained in Secs. V and VI, we are able, in Sec. - .
) > . . (2) aDy=—bBy;
VIII, to discuss the validity of the Fisher's mean-field de-
scription.
a—b a—b)\2
@-5) 195+ ( 20 ragergy o[ 227 i
. THE STRING FUNCTION a

In this section we introduce the quantity, which is the key
to our analysis, i.e., the string functi@} ,(t). We also de-
rive the constraints for which the equation of motion of the
latter is a closed hierarchy. In the sequel, we solve the latter (a—b)? 11 11
providing the density of particles. T T ab (I'1o—Too

Instead of considering the standard empty-interval func-

a a—b
- Borgs - 25 e rigrig-ry

tion [9-13], we focus here on the more general form<(1 a a—-b
<y=x+L), = 5 (T50—To) —| =5~ (Fo1+ o1~ T T'g0)
— (a_b)z(rll_rll)
Sey()=((a—bny(a=bn,.1)- - (a=bn,_,) ab o o0
X (a—bny_1))(1), (6) a\? a(a—b
' [ 3] rggrrag-rgg-rgy 2

wherea andb are nonvanishing numbers.

This expression reduces to the empty-interval function
whena=b=1 [9-13]. Hereafter, we will derive the equa-
tion of motion of the quantity, ,(t) and determine which +
constraints are necessary and sufficient to close the latter. An
alternative approach would consist in considering the empty-
interval function[with a=b=1 in Eq.(6)] and obtaining a The interesting point is that these five constraints are gener-
solution of some related reaction-diffusion model via a simi-ally independent of the previous ones, E). Therefore, in
larity transformation. This approach has been extensivelgeneral, models that are solvable via the approach presented
studied for the free-fermion modeJ41,13 where solutions here are not on the ten-parameter manifold described by Eq.
of RD systems are obtained from the solution of {free-  (2) where the equation of motion of correlation functions is
fermion) diffusion-coagulation model. The latter approach isclosed.

10, 101, 110, 1-01__ 110 1701 10 101
X(P1+ i+ Toe+Pog—Toi—Ti6— 10— To1)
2

a—b
(I+T9-T15-T5D. ®)

b
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When the constraint®) are fulfilled, the equation of mo-

tion of the string functiorS, (t) on a periodic Iattlce ot
sites is the followingfor aC;#bA; andaC,#bA,).}

d
asx,y(t) =(aC;—bA) S 1y(H) +(aCy—bAy) S,y 1(t)

D, D,
- st—l,y(t)_ st,y+1(t)_(81+ B,+C,
a—
+C2) S y(t) + roo+| — (Foo+
a—bh\?

+
a.

Féé}(y Xx—1)S,,(1)

(Isx<y<x+L), (9

i

dtsx x+L(1)= |—[Foo“L

a 2
+ T) Féé}sx,ﬁ L(t),

Sx,x(t):l,

where the boundary conditio8, ,(t)=1 is obtained from
the requirement thatd({dt)S, 4 ;(t) = —b(d/dt)(ny(t)).

Let us note that whera=b=1, we recover the usual
constraints of the IPDF method25=T797, T'59=T719, I'99
~rg=rg;

IV. SOLUTION OF THE EQUATION OF MOTION
OF THE STRING FUNCTION

PHYSICAL REVIEW E64 066123

that cannot be mapped onto free-fermion systems, a few re-
sults have been obtained: Doering and ben-Avraf@rhave
obtained the stationary concentration and the relaxation spec-
trum of a reversible diffusion-coagulation model on an infi-
nite lattice in the continuum limit. Later, Peschedlal. [12]
have studied the relaxation spectrum of the Fourier transform
of the string function on a periodic lattice with help of the
conventionallPDF method.

It is useful to introduce the following notations:

ag ap
5 =aC;—bA#0, =aCy—bA#0,
Bi_ D1 B B D2 B
2 b b’ 2 b b’
a- ot a—b\? 11
—|Tgo+| —— (Foo”L 00) T'aol,

Hereafter, we solve the equation of moti@®) for the case
6#0 (6=0 corresponds to the free-fermion cpsB,+#0,

andD,+ 0 with the additional conditiony,= a1=a# 0 and
B1=B,= B, which corresponds to the restriction fanbi-

asedsystems.

We also introduce the following auxiliary function:
Scy()=wY"*R,,(t), where we chooseu=a;i/B;
= JalB andq= va, B,= \JaB, and we solve Eq9) for the
general case whemg+ 0 (notlce2 thatD;=D,=0=q=0).
With these notations, the equation of moti@ becomes

The equations of motion for the string function have been

intensively studied for free-fermion systems both in the con-

tinuum limit [9,10] and on discrete latticegperiodic and
open boundary conditiong11-13. However, for systems

Yf aC,;=bA; and aC,=bA,, b/a=C;/A;=C,/A, and the
equation of motion of5, , reads

d D, D,
GiS00="F S0~ T Seysa(D = (¥+ Sy ()
—(y—x=1)8S,, (lsx<y<x+L)
d
&Sx,erL(t)z_Lésx,erL(t),
where
‘y+ 6=Bl+ Bz“l‘ C1+C2 and
00, 10, o, [27PV2 )
=—|Tgot (FO +Tg0) + e I'osl-

An example of a model in which dynamics is described by such a
system of equationéwvith a=b) is the random sequential adsorb-

tion process of dimersJJ— AA [18].

TR 0=5 D (R eyl V+ Ry o} = ¥Ry (1)
—(Y=X) IRy (1) (Is=x<y<x+L), (11
d
SRt = ~ LRyt (1),
Ryx()=1.

The stationary solution of the systefhl) is obtained with
help of the properties of Bessel functions of first and second
kind, respectively),(z) andY ,(z) [19]. In fact, the structure

of Eq. (11) for 1=x<y<x+L suggests the ansatz

°The case whereD,=D,=0 corresponds to the situation
where the equations of motion afl the correlation functions close
[see Eqgs(2) and (4)]. For a translationally invariant system with
initial density p(0)and withB;+B,# C;+C,, the density simply
reads

oo ArA T AthAy
<nj()>—m P(0) C,+C,—(By+By)

Xexg —{C;+C,—(B;+By)}t].
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Ry (©)=ALdy s (201 8) +BLYy_ 4 ,(20/5). Ryx(©)=1=A.J,1520/8)+B.Y,, 520/ 5)

Inserting this expression into E@ll), we obtainw= /4.
Therefore, we have and

Ry () =AY s 15(2018) +BLYy x4 1520/ 5).

(12 R L(2) =ALIL 1 5(201 8)+BLY L1 516(201 ) =0.
The quantitiesA, andB, are determined with the help of the
boundary conditions: It follows that
2q 2q
'A YL+y/5<F) E ‘JL+)//6(F) 12
L= 2q 2q 2q 2q\’ 4 2q 2q 2q 2q\’ (13
‘JL+y/§ ? Yy/(s F _YL+y/6 F Jy/t? F ‘]L+y/§ F Yy/é 7 _YL+y/§ 7 ‘]y/b‘ 7

which, with Eq.(12), provides the stationary expression fog (=) and thus we obtain the stationary expression for the string
function,

yox I+ y8(2016)Yy 51 116(2018) =Y 1 115(20/ 6) Iy 1 115(20/ 6)
Sey(*)=n Jis 5201 0)Y ., 5(2018)— (14
Lt 8201 8)Y 11520/ 6) =Y 1 ,15(20/ 6)J 1 5(20/ 6)
|
To solve the dynamical part of E¢L1), we seek a solu- R._11 £(29/8)=0, (19

tion of the form Ry (t) =Ry (*)=3I,r] e ", which

leads to the following difference equation: ) . .
which admitsL—1 zeroes[12,20,19 with degeneracyL..

N N N N y+ay—x)|] , The latter are symmetrically distributed arounk2 (which is
My sxe1tly—1xtTyx—1tTyrixt 2N = —q Iy x an eigenvalue il is even. To obtain the complete set of

L(L—1)+1 eigenvalues, i.e., the complete relaxation spec-

=0 (15  trum{E;},i=1,... L, of the string functionwhich has not
to be confused with the spectrum of the stochastic Hamil-

with the boundary conditions tonian H), one has to take into account the eigenvaipe

\ \ =L ¢ directly obtained from the boundary conditidt6).

(Lé=Aq)ry x4, =0 andr,,=0. (160 Notice that in{E;} the indexi=1, . . . L labels thel distinct

eigenvalues forming the relaxation spectrum. In order to

Introducing the notatiofE=(q\ —)/6, Eq. (15 admits s p53ye some more insight into the relaxation spectiy,

solution i=1,...L, of the string-functionS, ,(t), we can take ad-
N~ ~ vantage from the fact that the following eigenvalue problem:
ry=Ady xe(20/6)+BYy « g(20/9),
whereA, B, and the(relaxation spectrum{E} are determined (E-=n)F,=V(F,_1+Fp;1) (1sn<L),
from the boundary conditiongl6), which imply (20
AJ_e(20/8)+ BY_e(29/8) =0, Fo=FL=0
5 . (17
AJ| _e(29/8)+ BY _g(29/6)=0. admits as eigenvalues the< 1) zeroes of théommel func-
tion R _;; g(2V)=0 [20,12. Therefore, choosingV
The only nontrivial solution of this systertfor which 4 = ]9/ S, tr|1e p(;obler:: of ?etelrmininr? the relax?tion spth{cté)um is
+0 andB+0 ; reformulated as that of solving the eigenvalue probi6),
an ) requires M|F))=E|F)), whereM is a (L—1)X(L—1) symmetric
JL_e(20/8)Y_g(2g/8)—I_g(29/8)Y, _(2q/8) =0, (but not Hermitian whery has an imaginary partridiagonal
(18  matrix and[F)) is a (L—1)-component column vector:
| F)Y=(F,—1F5---F__1)T. The general form of the matrix
or equivalently in terms of theommel functiorj19]: M is the following:
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1 g/ O
aé6 2 g/l O 0
0 g/6 3 g/ O 0
M= 0 : ) (21
o ... O . gléd (L-2) dqlé
o ... ... ... 0 g/é (L-1)

For small systems thd_(— 1) distinct eigenvalue§E;} of M can be computed analytically. Fbre= 6, with V=q/ 8, we have

5+4V2+ /94 24V2+ 4V
{EI}: 3,3i

2

where we still have to take into account the additional eigenvgiue L 6. The spectrum depends on the sizef the system

and this is, in particular, the case fB* = ming{E}=¢_, the smallest eigenvalue that governs the long-time behavior of the
system. For larger matrices we had to proceed numerically andsfdr, ¢, —¢€,, andE* is a constantE* =¢,,. ForL=6,

we have the exact result

5+4V24 94 24V2+ 4V4
EL:6:3_ .

2

This expression can be considered as an excellent approximation for systemslof4iZeee footnoté4)] and, in particular,
for €,. Numerical results show that the eigenvalues of &) are “close” to the integers and thus never coincid, .
Therefore, the long-time dynamic¢ef large systems, with.>1) is governed by the eigenvalu®¥ £q/ )

2 !
q q
2

q

2
5+4 5 +4

E*=€ =3- = €L=6 (22

i.e., Scy(t) =S, _«(1). In this case, the coefficientAEi are ob-
tained from the initial condition according to
g\ *=E*S6+y=¢. 6+ . (23

This expression provides the inverse of the relaxation time of L .
the model under consideration. -AEi:_Zl [Nl In-g,(20/ 9) YL g, (20/5)
Having obtained the relaxation spectrum and the expres- "
sion oerX, the complete expression for the string function —Yn_Ej(qué)JL_Ej(Zq/é‘)]*[S,l(O)—Sn(oo)]lu_n,
follows as
(25

Sey(t)=Sey(=)=py XX «‘lEi(f(Ei‘s+ nt where is a HermitianL X L matrix [see Eq(30)].
Ei To clarify this point let us introduce the following vectors
><[Jy—x—Ei(2q/5)YLfEi(2q/5) of the Hilbert spaceCt (with the usual scalar prodyct

_Yy—x—Ei(zq/5)JL—Ei(2q/5)]-
19))=[{S1(0) = Sy()} ™ *- - -{SL(0) =S (o)}~ H]"
(24 26)

Here for simplicity we consider the translationally invari-
ant (but not necessarily uncorrelatgdsituation, when and
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31,2018 g (20/6)— Y, ¢ (20/9), ¢ (2a/5)

Ve ) =1 91 g (20/8)Y, ¢ (20/6) =Y, _1 ¢ (20/5)3. ¢,(20/5) |- 27
0

In a vectorial formulation, the coeff|C|enL$E are obtained Although the present approach could be formally extended to

from the initial state of the system accordmg to obtain the exact and closed equations of motion of other
stringlike functions, whoséeventua) resolution would pro-

vide the exact expressions of all instantaneous two-point cor-

1S)) =" Ag [Ve)). (28)  relation functions, in practice such equations turn out to be

=1 extremely difficult to solve. The only cases where the whole

Solving this equation, we formally obtain the expression forh|erarchy' of equation has bgen complgtg ly sqlved are the
the coefficientsA ' free-ferm|on models_. On the discrdnd finite Iattlce these
B solutions were obtained by Krelas$ al.[11] and in the con-

tinuum limit (for the diffusion-coagulationd.A— .4 mode)

L
_ by ben-Avraham[10]. Unfortunately it is known that the
— 1
AEi_ ,-Z’l [V ]i'i«VEilS»’ (29 latter approaches cannot be extended to systems that cannot
be mapped onto free-fermion systefi4,10. Here we pre-
where N is HermitianL X L matrix whose entries read fer to take advantage of the quantitig®,(t)) and
(nyny41(t)) and S, (t), which we can compute exactly to
L obtain approximative instantaneous two-point correlation
[Mi,jE<<VEi|VEj>>: 2 [Jn_Ei(qué)YL_Ei(qué) functions of the systems obeying the constraiidls whose
n=1 associated string functiog, ,(t) obeys the equation of mo-
—Yn_g,(20/8)J g (201 5)1* tion (). . . _
' : For technical convenience, we consider the translationally
X[Jn_e.(20/8)Y _g.(29/5) invariant situation[thus (n,(t))=p(t)] and expanding the
! ! string function we have
—Yn-g,(20/6)JL g (20/5)]. (30)
. . . . a\’l (y— )
With the help of the expression of the string functi(@), o a Sy x(H)+ p(t)
we can compute the exact density of particles at>site
y—1 m-2
a—S;x+1(t) = —x—{ni Ny o t+~-~+(—
(nx(t))= k,;(Jrl . (31) jzl (y J)( 5 ]1+J>( ) a
In the nontranslationally invariant situation, we would X _ E NN, MO+
proceed in a similar manner, but we would have to work with y==hzlez 2 lm
vectors of the Hilbert spac€-(-"Y*1 In this case we +BY 2Ny, o0y (). (33)

would have to take into account the degeneracy of the eigen-
values of M in order to compute thé(L—1)+1 compo-

nentsAg appearing in Eq(24). This is achieved by replacing IFrtqm E?.(33), _it tis poslsilg_le t? ob;t_ain e?;ﬁcl: expressiorﬁ_ re-
E; with E; 4 in Eq. (24), where the indexl labels the degen- a Q%.ahwo—pgln correlat_|0n funct!on WiA noyl\lln ?uetl_n : Ielst
eracy of the eigenvalues;, i=1,... L. and higher-order correlation functions. As an illustration, le

From Eq.(31), we can also obtain the expression of the'“'lS first consider the case wheye-x=3. Equation(33) im-
noninstantaneous two-point correlation functionsP"'®S
(ne(t)Nny (0)). We should take into account the initial state
|P’(0))EnX0|P(0)) instead of|P(0)) in Eq. (31).

With Eq. (24), we can also compute thiastantaneous
nearest-neighbdftwo-poind correlation functions,

b
(NeNy o) (1) — £<nxnx+1nx+2>(t)

Sxx+3 a2 3ap(t)
=— - —+ -2 NyNy+ (t) (34)
a2+Sx,x+2(t)_a(s><,x+l(t)+s><+l,x+2(t)) ab? b g ( !

bZ

<nxnx+ 1>(t) =

(32 Fory—x=4, Eq.(33) with help of Eq.(34) leads to
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2
(neny i 3)(t) — (a) (NyNy1 1Ny 2Ny 3) (1)

:Sx,x+4(t)_2a3<,x+3(t) " E 2_ 2ap(t)
(ab)z b b
+{NyNy 1 )(1). (35
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(iii) This method does not give rise to nonlinear partial
differential equations and/or to nonlinear self-consistent
equations, which are generally difficult to solve and which
appear from traditional mean-field methods. Conversely, the
approach presented here gives directfter the truncation
procedurg access to théapproximative expressions of the
two-point correlation functions.

It follows from the exact expressiof24) of S, ,(t) that,
This procedure can naturally be continued for every two-for the models under consideration in this work, the related
point correlation functions. Therefore, for two-point correla- string function approaches its steady state exponentially fast,
tion functions(n,n,.)(t) of sites separated by a distance ~With an inverse relaxation time given by E@3). This result
using recursively the relations previously derived foris valid for an arbitrary initial state: the effect of the initial
(NNyir— 1) (), (Nnyir_o)(1), ... we obtain an equality condition only appears through multiplicative factofgs. In
relating (nen,.,)(t) and an unknownr(+ 1)-point correla- the translationally invariant situation we have the coefficients
tion function[ (NN, 1- - - Ny r—1Ny+,)(1)] to @ combination (25); other initial conditions do not affect the exponential
of known quantities, as in Eq$34) and(35). nature of the relaxatioif24) with the inverse of relaxation

It is therefore possible to obtain approximative expres-time (23).

sions for the correlation function within the truncation ap-

proximation(for r even,
(M1 My — 1N ) (D =Ny ) (1) - - -
X{Myr— 1N ) (1)
=[(nnyr )()]7
and
(MNy - N 1N Y =[Ny Y] D 2p(1),

for r odd.

Within this mean-field-like approach, we obtain the fo
lowing approximative expressions for the two-point correla

tion functions:

wra(t bp(t
(=230 o 0 it

3ap(t) [a\?
b b

wra(H)—2aS 5t b\2

<n><nx+3>(t)2 S( +4( )(ab;S( 3( )+[1_ a <nxnx+l>(t)}
2ap(t) [a\?
X<nxnx+1>(t)_ b + B ’
(36)

V. A MODEL THAT CANNOT BE SOLVED DIRECTLY
FROM THE CONVENTIONAL IPDF METHOD

In this section we consider a model that cannot be solved
directly by the conventional IPDF method. A brief account of
the study of this model has recently been reporte@@iti.
Here we complete and develop this preliminary work.

The dynamics of the model under consideration takes
place on a finite and periodic lattice. When a particle and a
vacancy are adjacent to each othelpranching reactiorcan
take place and the particld can give birth to an offspring

. (AD—AA and D A— AA) with rate T'jg=T57; another
_possible reaction is theeathof the particle 4 — < and

D A— D) with rateT' 99=T39. When two particles are ad-

jacent, they caroagulate( AA— A and AA—JA) with

rateI'19=T"91. In addition, when two vacancies are adjacent,
a particle can appedibirth processJJ— A and JJ

— @A) with rateT55=TJ3. The dynamics of this branching
coagulation with birth and death processB£BD) model
can be encoded by the following reactions:

AD— AA and@ A— AA with rate ' 15=Tg1,
DD —DA and@Z— A with rate ' J5=T758,
AA— AD and AA—D A with rateT19=T"91,

AD— DD and AD— S with rateT39=T57. (37

To conclude this section, let us comment on this recursive

procedure.

It should be emphasized that in this model, the effective

First of all, therecursivecharacter of the method appears motion of the particles is realized by successive processes of

through the repeated use of E@®3) and of the relations branching, coagulation, birth, and death on neighboring pairs
obtained for the other two-point correlation functions. Theof lattice sites, without aexplicit diffusion process.
advantages of this recursive mean-field-like method with re- The system described above can be viewed as an epi-
spect to the traditional mean field are the following. demic model where particles can spontaneously appear/

(i) The procedure of truncation appears at the level of thelisappear, have an offspring, and coagulate. It can also be
three-point correlation functions. viewed as a generalization of the voter mofdg| where the

(ii) This approach is based on the explicit knowledge ofpresence/absence of particle is associated with an opinion
the quantitiesS, _,(t), p(t) and({nyn,1)(t). (yes/ng and each site is associated with a human being.
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According to the dynamics of the model, each individual

PHYSICAL REVIEW E54 066123

ri9=rfi>0, 2rg}=2rg=Ti5=rg>0, and

changes his opinion at a rate proportional to the opinion of

his neighbors.

For the model under consideratidn=A,=A=T39, B,
=B,=B=T"j5—I's, C,=C;=C=T{5+I5 D;=D,=D
=T+ T30—(I'13+T19). If D=0, for the translationally
invariant situation with an initial density(0) of particles,
we have[whenB+# C, see footnote (2))

~2(C-B)t.

p(0)— e

A
nd)=c—g+ C-B

T13(2To0-T10) _

00_
o =0,
00

r=rg= (39)

We will see that the case treated in this secfianth the
constraints(39)] can be obtained from the reversible model
of diffusion coagulation with input of particlegeversible
diffusion coagulation with input of particlgRkDCI) model,

In this section we solve. with some restrictions on thesolved in the next section, via a similarity transformation. In

reaction rates, the above-mentioned model wbehO, i.e.,

in the case where the equation of motion of the correlatio

functions of the model give rise to an open hierar¢fy It

fact, in Sec. VII, we investigate a local similarity transfor-

Anation that would map the genei@] ,(t) function onto the

empty-interval function (with a=b=1) and the RDCI

has to be stressed that this model can be casted into a fre@0del onto the present BCBD model. In the sequel we show

fermion form only wher'15=T"35 andI'}9=T'39 (see[2] for

a complete classification of free-fermion systeniaurther-
more, this model cannot be solvédirectly) by the tradi-
tional IPDF methodnot applicabld9—-12] in the presence of
the processes\J— I, A— I and in the absence of
processesAD—IA;JA— AZ; the latter should occur
with the same rate as the coagulation rgfes12)). The idea
is to choosesuitablea andb to close the equation of evolu-
tion of S, \(t). This is achieved by imposing the following
condition:

(39)

and the reaction rates fulfill

I+ 915(2010) Y14 4/5(20/ 6) = Y11 5/5(20/ 8)I1 4 ,,5(20/ 6)

that such a mapping exists and establish that the approaches
followed in this section and in Sec. VIl are equivalent.

For the model37) with the restriction(39) and from the
definitions (10), we have a=(2al'i)/T30)(Ta0-T13), B
=—(2/a)(T'}5-T1) and thus aB<0, wui=p,=p
=—i[sgn(@)]|e/B|*? and q=i|aB|Y%. We also haves
=2bA/a>0 and[because of Eq39)] 0<|q|/6<1/2.

The subcas&15=T3 implies a=8=B=D=0 and we
recover (for C#0) (ny(t))=[a—S;x+1(t)]/b=A/C
+[{ny(0))—A/Cle 2,

Hereafter, we focus on the more general situation where
Egs.(39) are fulfilled withT'}3# '35, and thusa#0,8#0.

The stationary expression of the string function for this
model is given by the expressidh4). With help of the for-
mula(31) and the ratiq38), we obtain the following expres-
sion for the stationary density of particles in the system:

1
<nx(°°)>= E|a_:“

I 46020/ 6)Y 1,5(2018) = Y+ 15(201 8) ., 5(20/ 5)

] . (40)

Similarly, with help of Egs.(31) and (38), we obtain the stationary expression of the instantaneous nearest-neighbor

correlation functions,

2ab<nx(°°)>_ a’®

I 15160201 6) Y24 115201 6) =Y 1 1/5(20/ 8) I3 ,15(20/ 6)

<nxnx+1>(°°) =

2
"
b? " 5)

L1620/ 6)Y 1,5(20/8) = Y+ 15(201 8)J ;1 5(20/ )

} . (41

From Egs.(40) and (41) one can check that the system that cannot be mapped onto free-fermion sysfefsse also

under consideration is aorrelated system of interacting
particles In fact, one can see that(nn,, ;)()

# (N, () Wy, 1())=[{n,())]?, despite the fact that both
steady state$40) and (41) are translationally invariant, the

the model of the next secti@n

3In fact, for the free-fermion systems such as the diffusion limited

stationary distribution is correlated, which is due to the in-with pair annihilation and creation mod¢b] and the related

teracting charactethard core of the particles. We should

diffusion-coagulation model®@—11], it has been shown, for trans-

emphasize that the presence of correlations in the stationafgtionally invariant systems, that(nn,, () =[(n(=))]1?,
distribution is specific to the class of models considered her¥ r>0.
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To study the dynamical properties of the model, we need Equation(42) provides the inverse of the relaxation time
the relaxation spectrum of the string function. As establishe@f the system.
in the previous section, the latter is obtained as the set The dynamical approach towards the steady state of the
of zeros of the following Lommel function: density is obtained from the dynamical expresg@f of the
Ri-11-e(2i]q|/8)=0, whereE=(g\—y)/é. Solving the  string function, according to formulé81) and with the ratio
associate eigenvalue problef@0) (in this case, the matrix (38), we obtain
M, see Eq(21), is not Hermitian.

For small systems theL(— 1) distinct eigenvalue§E;} of
Eq. (21) can be computed analytically. Far=6, we have

(V=q/9) (N(1)) = (Ny(0))= %); AEie*(EizHV)t
2 2 7 '
{E}=13,3i \/5““’ = V92+24V v X[J1-e(20/ )Y, ¢, (20/9)

_ . —Y1-g,(20/0)J-g(20/9)],
For larger matrices we had to proceed numerically. Our
analysis(based on the spectrum of large matrices with (43
=<1000), shows that the spectryi (and therefordq\}) is
always real and symmetric aroud2, which is an eigen- .
value whenlL is even. The other eigenvalues are not generWhere the coefficientslg have been computed for the trans-
ally integers, but for the central part of the spectrfior  lationally invariant situation in Eqg25)—(30).
eigenvalues close df/2), the eigenvalues approach integer  With help of Eqs.(24) and(31), we obtain the expression
values. This is not the case at the extremities of the spectrunof the dynamical approach of the instantaneous nearest
In particular, the smallest eigenval@& =ming{E} is not an  neighbor to its steady statél),
integer and depends on the size of the systeirs ¢, > 1.
However, forL>1, ¢ —e€,, and E* is a constantE*

=e€,>1. ForL=6, we have the exact result
‘ (M 1) () (NN 1) (%)

5+4V2+ 9+ 24V2+ 44 a w\?
€L=6:3_ \/ 2 y :6{<nx(t)>+<nx+1(t)>_2<nx(°°)>}+ B
with 1< e _g<3—+/2+}/13. This expression can be con- X; Ag e B3, £ (20/6)Y g (20/)
sidered as an excellent approximation for systems of lsize '
>1 and, in particular, foe., .* — Y2 g(20/8)JL £(20/8)]. (44)
Therefore, the long-time dynami¢sf large systems, with
L>1) is governed by the eigenvalue
5 > - From Eqgs.(24), (43), and (44) and with the help of Egs.
E*— e 3 \/ 5+4Vo+\9+24Ve+4V (33)—(36), we can also obtain the approximative expression
Ta= 2 ' of the other two-point correlation functions.
The result (43) can be extended to the case of the nonin-
ie. stantaneous two-point correlation functio(nx(t)nXO(O)).
o1l 1010 11 It suffices to replace in Eq(43) the coefficients Ag
N*ZE* S e e S v 2 Iool1o+'11(2 50— I'10) by those obtained from the initial condition
q YTeaoTy T ({IIY=}{a—bn,(0)]}n, (0)), instead ofS,_,(0).

Let us now mention the long-time behavior of quantities
computed above. For the sake of simplicity we consider the
translationally invariant situation, in the regime whétét
>1 [E* is the smallest eigenvalud2)] we have

+(e—1)(I5+T1Y

>2T'15
=0. (42
<nx(t)>_<nx(°°)>~

M _(E*
B)AE*e (E* 5+ y)t

“As an illustration, for the casego=3/10,T'13=1/2,I'}9=1, and

I'9%9=1/3, with the expression above, we obtajanalytically X[J1-e+(20/0)Y —gx(20/6)

€. -6=1.082 333768 3. For larger systenis<10,25,40,1000), we RV 20/8)J 20/ 8
obtain numerically (with an accuracy of 109 e;9=€,5= €49 1-ex(20/0)JL -+ (20/9) ],
= €100~ 1.082333769 7. (45
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n,n t)y—(n,n 0 ranching process can occur with rétg;=I"57. In addition,
e 1) (D) = (M 1)() branchi ith rétE=T3}. In additi
when two adjacent sites are empty, a particle can spontane-
B P Ags o E 551 5 2q v 2q ously appear on a siténput) with (a finite) rate Igo=19%
b2 7B s ) RS >0. The dynamics of this RDCI model can be encoded by
the following reactions:
2q 2 ZaLLAE* %
_ _ ' _ ' TR A (EF S+t
Yz‘E*( 5)‘]'-‘5*( 5 % b2 ° AT~ A with rateT35=T39>0,
2 2 2 .
X Jl—E*<§q)YL—E*(§q) —Yl_E*(?q) DD — DA and@D— AD with rateT95=T3>0,

(46) AD— AA and@ A— AA with rate'15=T757,

29
X | =
‘]L—E ( 5)
It follows from the exact result&12)—(46) that the density
(n(t)) and the two-point correlation functions .
(ny(t)n (0)) (noninstantaneodimnd(nyn, . 1)(t) (instanta- In order to apply the(conventional IPDF method, we
neous approach the steady state exponentially fast, as thEfduire that the coagulation and diffusion rates [&e12]
string functionS, ,(t), with an inverse of relaxation time L L L L
given by Eq.(42)."In addition, in the sense of the approxi- r%=T% and I39=r19. (48)
mative schemég33)—(36), these results are expected also to
be valid for the more general correlation functions therefore with Eq(48), we havel“(l)é=l"(ﬁ=l“(1)é=f‘}(1)>0

{NxNy)(1)(r>1) and for arbitrary initial conditions: the anq are left with 4-1=3 independent reaction rates for the
initial state only affects the multiplicative factors: of Eqs. o qdel(47).

(43) and (44) [for translationally invariant systems thég Before proceeding with the solution of this model some
are given by Eq(25)]. These statements are supported by the;omments are in order. To our knowledge this model has
study of the subcasE1y=1T"go (with C+#0), which is solv-  peen studied in the continuum limit on an infinite chéior
able by conventional methods and in which the dynamics ighe translationally invariant situatiprby Doering and ben-
expected to bejualitatively the same as the more general ayraham[9]. The latter obtained, in this limit, the stationary
case considered hefespecially fof I';5— 3o/ <1). For this  concentration of particles, the stationary interparticle func-
subcase the density has been computed previdf@hyarbi-  tion, and the relaxation spectrum as the zeroes of some Airy
trary initial condition and the two-point correlation func- functions. In their work, Doering and co-workers considered
tions read an infinite chain with lattice spacingyx (hereAx=1) in the
continuum limit (Ax—0). On this infinite chain, the reac-
tions occuring are the symmetric diffusion and coagulation
with ratesT{5=T39=T91=T19=D/(AX)?, the symmetric
branching processes with rafgg=T51=v/Ax, and the in-
and put of particles with ratd' 59=T95=RAX.
In this section we want to solve the moddl7) with the
RE restrictions(48) on a finite and periodic lattice df sites.
A __—act —4ct According to the definitiong10), for this section we have
<anY>(t)_(C) e Sy (0)e a1:a25a’52(01_A1):2F(1)2>0a B1=B;=B=—2D;
=2B,=2(T%+T1-T39), 6=A;+A,=2I'33>0, and y

AA— AD and AA— DA with rateT1)=T31. (47

e72Ct

A
<nxnx0>(o) - E

A
(ndON(0))= 5 +

A A
+ & | {nx(0))+(ny(0)) = | (&7 +6=2(2061+ 7).
Hereafter, we thus solve the mode@7) with the con-
—e 40, (y#x). straints(48), which is a model described by-41=3 inde-

pendent paramateiseaction rates for the case where the
input of particles is nonvanishinge., >0) andD# 0. The
VI. SOLUTION OF A REVERSIBLE DIFFUSION- cases wheré@=0 have been extensively studied in the con-
COAGULATION MODEL WITH INPUT OF PARTICLES tinuum limit[9,10] as well as on discrete latticé$1]: these
In this section we study a model of reversible diffusion MCd€ls have been mapped onto free-fermion models
coagulation with input of particles, which can be solved byl11,2,8- In addition, wherD= =0, for the translationally
the conventional IPDF method. Particles can jufpvided invariant situation and an initial densip(0) of particles, we
that the arrival site was previously emptp the right and Nave[whenB+C, see footnote (2)
the left with rateI'{3=T"3)>0. We assume also that two
adjacent particles can coagulate with the same P
=F2} and that when a patrticle is adjacent to a vacancy, a

A
-2(C—B)t
B e . (49

A
<nx(t)>= ~r "

c—s PO ¢
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For the model under consideration here, we hawe\a/8  solved in Sec. IV.
and q= \/a_,B As >0 and =0, with =0=D=0, we To compute the relevant physical quantities, we proceed
focus on the case wherg# 0. One should be cautious with as in the previous section. In fact the expressions for the
the fact thatqg and u can be imaginary, in which case the density, correlation function, and the current of particles can
sign ambiguity is fixed by requiring thafu= «. be immediately obtained from Eqg&l0)—(45) whenb/a=1.

The equation of motion of the string function associatedHereatfter, for the sake of completness and clarity we quote
with this model is thus of the fornt9), which has been these expressions

(o)) =1~ ‘]L+7/5(2q/5)Y1+y/5(2q/6)_YL+7/§(2q/5)‘]1+y/&(zq/5)} 50
X K 1516201 6)Y 15(2018) = Y4 5(2018) 1 5(2010) |’

I+ 95(20/16)Y 54 115201 6) =Y 1 15(20/5) I 4 /5(2q/5)}
n.n 0)=2(ny())— 1+ u? & & & 4 51
(M) () =200 =t iy QO 1 o2A13)— Y s 1o 201 6)3 (201 5) 5y

We again note that the expressiof®) and (51) are inde- proximation for systems of size>1 and, in particular, for

pendent of the site labeland therefore correspond to trans- €,,. We can then show that fayimaginary, the quantity,

lationally invariant stationary quantities. >1. In fact one can comput@pproximative bounds fore,
As for the BCBD model, from Eqg50) and(51) one can  with L>1. This is achieved with help of E¢22), namely,

check that the RDCI model is a correlated system of inter —a_ 1

acting particles, characterized by a translatig/nally invarian;1<6":6\3 2+iV13.

but ~ correlated _stationary _ distribution: (nyny.1)(=*) symetrically distributed arount/2 (which is still an eigen-

— 2
i<$x(°°)><nx+1(°°)>—[<,”x(°°)>] - alue whenL is even. In this case, the smallest eigenvalue
o study the dynamical properties of the model, we nee s—¢ can be negative (e.g. € _g<0 if qlo
=€ 9., €L=p6

the relaxation spectrufE;}, i=1, ... L, of the string func- 10)+-10 .

tion. As established ir?‘tEhEa previous section, the latter is ob—>1'21909 O;(; ). However, =2T7gy/T'g0= ELS_l (in_fact,

tained as the set of zeros of the following Lommel function: ~ 2L 01/l 'oo<€L-6=1), antljo thuﬁ' whenq o real, we
Ri_11-£(20/8)=0, whereE=(g\ — )/8, which are com- Nave, 1%)\* =e 0+ y=2[2I'g+ o+ (€L~ 1)I'p0]=2(I'5y

puted solving the associated eigenvalue prob2@n. Notice ~ +€.I'50)>0. Again, for large systemsLg1) the expres-
that whenq is real the matrixM, Eq. (21) is Hermitian, ~ sion of e is well approximated by the exact express{@@)

WhenT'39<T'$9+T31, qis real. The eigenvalues are still

otherwise § is imaginary M is anti-Hermitian. of € —¢.

Again the spectruniE} (and thereforgg\}) turns out to WhenT'39=T29+T1! thenD=q=0 and we recover Eq.
bereal (even whenM is anti-Hermitian and symmetrically ~ (49), with B=D=0.
distributed around_/2, which is an eigenvalue wheln is In definitive, the long-time dynamics of large systems is
even. governed by the eigenvallg* >0 according to Eq(22) for

When T'E0>T304+ T3 then q is imaginary with 0 L>1. This means that the inverse of the relaxation time of
<|q|/8<1/2. Whenq is imaginary, the eigenvalues are not the system reads
generally integers, but for the central part of the spectrum
(when the eigenvalues are closelt®), the eigenvalues ap- g\* =E* 6+ y=¢€ 6+ y=2[2T 57+ 15+ (e, — T'53]>0.

proach integer values. This is not the case for the smallest (52
eigenvalueE* =ming{E}, which is not an integer and de-
pends on the size of the systel®* = ¢, >1. However, for The dynamical parts of the above quantities are obtained

L>1, ¢, —€, andE* is a constantE* =¢,>1. The ex- similarly from Egs.(43) and (44), settingb/a=1 in these
pression(22) can again be considered as an excellent apexpressions,

(n(1)) —(nx(*))= M; Age” B3, g (20/8)Y L g,(20/8)—Y1-g,(20/8)IL ¢,(2a/9)], (53

<nxnx+1><t>—<nxnx+1><oo>:{<nx(t>>+<nx+1(t>>—2<nx(w>>}+u2§ Age” G, ¢ (20/8)Y g (29/6)
_Y27Ei(2q/5)‘JL7Ei(2q/5)]v (59
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where the coefﬁuentsilE have been computed in the trans- y—x>0. To obtainp, ,(t), we seta=b=1 and the string

lationally invariant situation in Eqg25)—(30). functionS, \(t) reduces to the empty-interval functif®, 10]
From Egs.(53), (54), and(24), we can compute for this Sy y(t)= <Hy +(1=n))(t), which is associated with the
RDCI model the approximative expression for all two-point probab|I|ty of havmg a sequence of holes starting from the
correlation functions according to the sche(88)—(36). site x and of lengthy—x. As shown by Doering and co-

The long-time behavior of the quantiti€s3) and(54) are ~ workers[9,10], it is possible to relate the density of particles,
also obtained as explained in the previous section and ithe empty-interval functionS,,, and the interparticle

particular the long-time behavior of the density is given byfunction Py y(1):Scy+1(t) =285 (1) + S y—1 (1) =((1
Eq. (45), where the smallest eigenval& is the quantity —n,)---(1—ny,_5)[ny,_1—(1—ny_)n,])(t), Therefore,
obtained in Eq(52). with p(t)=(1/L)Z(n;(t)), for the translationally invariant

As in the case of the model BCBD, and for the samesituation[the inverse ofp(t) measures the average distance
reasons, the density and the two-point correlation functionbetween adjacent particlesve have
(instantaneous and noninstantangowslax exponentially
fast to the steady state with an inverse of the relaxation time
given by Eq_(52)_ D (t)=p (t)_[sx y+1(t) st y(t)+Sxy 1(t)]
Another relevant quantity that one can compute for this e ymx p(t)
model is the so-called interparticle functigs ,(t) [9,10]. (55
The latter gives the probability, a tintefor a particle at site
x—1 to have as a next neighbor, a particle at a distant site In particular, in the stationary case, we have

Siy+1(%) =28, () + S y—1()
p()
2q

2q 2q) 2q
JL+y/5 5 /LYy—x+l+y/6 5 +u Yy x=1+918| "5 2Yy x+y18| "5
=p

2q 2q 2q 2q 2q

‘]L+y/§< 5)|:Y‘y/5(7)_MY1+7/5(7>}_YL+7/5(7)|:‘]y/5<F)_IU"J1+7/§( ”

2q 2q _ 2q
YL+y/5( 5)[M3y—x+1+7/5< 5)+M Ly - 1+7/5( 5) 2J, x+y/5( ”

2q

2q 2q 2q 2q
JL+«//5( 5) Yy/ﬁ( 5) MY1+7/5< 5”_\(“«%5(3) Jy/5< ) M31+y/5( ”
I

Py y(®)=

—X

—u

(56)

To conclude this section, let us point out the fact that the(TTY=; Y1-n, j))(t) into another string function of the form
results(50)—(56) can be immediately generalized to systems<1'[y 1(1 [b/a]n ))(t). In this section we study the class of
which, in addition to the processdd?), also include the models that can be obtained from tHeDCI) model, ana-
(adjacent pair-creation reactht@@eAA with rate Foo lyzed in Sec. VI through a class of local similarity transfor-
In fact, it suffices to replacd“ with 1“1 +F1 in Egs.  mations. In so doing we will answer the following questions.
(50)—(56). (i) Does a similarity transformation, which maps the

We also would like to emphasize the fact that the expresRDCI onto the BCBD model and the empty-interval function
sions(50)—(56) are different from those obtained by Doering (with a=b) onto a string functiowith b/a# 1) exist?
and ben-Avraharh9] who considered the continuum limit of (i) If so, does the mapping provide the solution of the
this model on an infinite chain. model BCBD for the same constrainf89) considered in

Sec. V?
Let us consider theoriginal stochastic HamiltoniarH,

through the(local) similarity transformation3; defineH as
[11,2,13

VIl. SOLUTION OF MODELS (WHICH CANNOT BE
MAPPED ONTO FREE-FERMION SYSTEMS)
VIA SIMILARITY TRANSFORMATIONS

In Secs. V and VI we have solved two different reaction- A=B"HB. (57)
diffusion (the BCBD and the RDQImodels, which cannot
be mapped onto free-fermion systems. It is therefore natural 5 o
to wonder whether or not there exists a mapping betweeBecause of the requirement thatO(t))[H,|P(0))]
these models, transforming the empty-interval function=(O(t))[H,|P(0))], which implies that
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<}|Oe—Ht|P(0)>:<')"(|6e—Ht|'|5(o)> The uncorrelated and homogeneous, but random, initial
state becomes

=(x|0B e "' B|P(0))

=(x|0BB e MBB | P(0)), p(0)
l_ -
it is clear that under this transformation, the observable P(0))= r 61)
and the initial statéP(0)) transform according t®=08 p(0)
and |P(0))=B"*!|P(0)), where we assume homogeneous ro’

(uncorrelated, yet randominitial states with density 0

<p(0)<1 of particles, One has to ensure that all the reaction rates appearing in Eq.

_[1=p(0) (60) are =0, which requires that=0 and that 6p(0)/r
[P(0))= p(0) <1. Therefore we have the necessary conditigap(0)
=0.
In this section we focus on local transformations of the form  According to the transformation$58) and (59), the
[2,11,13 empty-interval function(H}’;xl(l—nj))(t) is mapped onto
B=®,-L:1bj, (59) the string function(HJ}’;x(l—nj)>(t)=<ij;X1(1—rnj))(t)

and therefore, the statistical quantities for the model de-
whereb; denotes a X2 matrix acting at sit¢ such that the ~ scribed by the stochastic Hamilto_ni&h are obtained from
stochasticity conditio{y| 3H =0 is fulfilled. In addition, in ~ the related quantities computed in Sec. VI for the model

order to transform the empty-interval function into a moreRDCl as
general string function we want to consider transformations

that map the operator-1n; onto 1-n;=1-rn;, wherer
=b/a. Pescheét al.[12] have shown that the transformation

(58), with
_(1 1—r)
b=, | (59)

1
<nx(t)>ﬁ,|ﬁ(o»=F(”x(WH,\P(O)) ;

1
(NN )i, o) (D= = (N y)h poy(t) - (¥>0),
satisfies this property. Through this transformation, accord- r

ing to Eg. (57), the stochastic Hamiltonian related to the (62
RDCI model transforms into the following stochastic Hamil-
tonian: where (n,(t))n |poyy and (NyNy.1)n poy(t) have been
T00 00 F00 00 computed in Eqs(53) and (54).
00 01 10 11 . . . .
_ _ _ _ We will now consider two specific models described by
_ e Tor I'o I Eq. (60). R
Hjj+1= ~10 =10 =10 =10 |’ (a) To answer the questiont® and(ii), we seek, through
oo T'or T'io T'1a the mapping(58) and (59), a model of the BCBD type and
T4 111 U Fu thus require '75=Ig3=I%}=0, as for the BCBD
model considered in Sec. V and infer from E(G0),
where the nondiagonal entries read (TIs—T59(r—1)+rr'39=0 (r+#1), which implies
To5=Toyr=Toyr, T55=0, 11 o0
r= ﬁ> (63)
o1=T10= (25— T'1) (r=1)/r, o+ Tg1—Tog
1:(1)(1)=1:(1)(1)=[(Fi(1)—1“(1)8 (r—1)+r1“(1)(1)]/r, Replacing the expressia3) in Eq. (60), we obtain the

reaction rates of the BCBD model in terms of the rates of the
original (RDCI) model. In order to have a physical BCBD

model, we have to require the reaction rakés to be posi-
tive. We now take advantage from the fact that a version of

the BCBD model has been solved in Sec. V, Whiﬁ%
o =TT (2T 8-T1Y). It is therefore possible to check,
FO=T0=[Tsr—1)2+2-r)((r—D)T15+rTg)/r. from Egs.(60) and (63), that this relation still holds in this
(60) case and parametrize the reaction ra6 as follows:

T11_F11_pll
Poi=T15=T1dr,

T90=2(r—1)[(r—1)(I' ¥~ T3 +rTir,
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TL0_71y,  Fll_plly, flo:(r_l)flo which imply thatr =3. Such a model is thus mapped onto
00 T 00y TA0 Ay 00? the RDCI model with the rate39=31i=3/213%=T11?
710 710 =1. In this case the density of the BCBD model is related to
1’128:%(2%8_1’1%), r=1+ ~_i;>1_ (64) the density of the RDCI model according to E§2),
00 00
The requirement of positivity of these raté®4) leads to (n (t))BCBD
~ ~ T10_4711_ T10_5T700_19.1p
2T39>T10 Thus, the reaction rate4) describing the X Tgg=1l =12 13 =21'=3P(0))

BCBD model from the RDCI model are identical to those
considered in Sec. V for solving the BCBD directly from the
generalized string function. It is therefore easy to obtain the
density and the correlation functions of the BCBD model
from the RDCI model inverting the relatiof64) and using |y particular we have seen that the stationary density is in-
Egs.(61) and(62). As an illustration, we consider the BCBD gependent of the initial state and thus, in this case, we have

model with ratesI'}9=1, T}=1/2, T}9=2, andT93=3, [see Eqs(40) and(50)]

_= RDCI
=3 <nx(t)>(r(1)g=3,rié=3/2rg(l’=rﬂ=1;\P(0)>) '

1
BCBD _- RDCI
(N a1t ig-2i -9 73 (M D rigoarti-sariterizen

1 V2] 3 (V2013 Y7 V2i13) = Y 16(V21/3)376( 121 13)

3 3 [ 3, 1d(V2i/3)Yye(N2i13) = YL s 16(V2113) Iy V20 13)
=0.2401 (L>1).

(ii)We are now in a position to answer the questiGnsand AT — AA andBA— AA with rate'fiézl:ﬁ,
We have shown that there exists a similarity transforma- o
tion (58) and (59) that transforms the empty-interval func- AA— AD and AA—D A with rateT19=T"21],
tion onto the generalized string function and that maps the
RDCI onto the BCBD model, with the same constraints of
solvability as the constraints (39) imposed in Sec. V. We con-
clude that the present approach and the method devised in _
Sec. V are equivalent. This model(RDCIPA) can be obtained from the RDCI model

One additional comment on this equivalence is howeve¥ia the similarity transformatior(58) and (59). Imposing
useful at this point. Although both mentioned methods ard 10=2'50 in Eq. (60) we get the following reaction rates:
equivalent, the method devised in Sec. V is in a sense more
convenient because it is direct: solving the equation of mo- fénggézpéo r f%é:fé%: 2ris,
tion of the adequatégeneralizedl string function solves di-
rectly the BCBD model. Conversely, via the similarity trans-

AA— B with rateT99. (65)

formation we first solve the RDCI model, which is a task of rY9=2(r—-1)ryl,
the same difficulty as that of solving the BCBD model, and
then find an adequate and nontrivial similarity transformation F12=F8%=(2— r)l“é‘f+(r . 1)F$8’

(where the new reaction rates should be interpreted correctly
in terms of the original ongs

(b) Let us now consider a model that can be solved from floz”flozﬂfnJrFm (66)
the solution of the RDCI model via the similarity transfor- 01701 2 “10° 710
mation (58) and (59). The model under consideration is a
reversible diffusion coagulation with particles input and pairFor this RDCIPA model, we have thrépositive indepen-
annihilation(RDCIPA), in which the dynamics can be sym- dent parametens=1, I'}9=0, andI'}9=0. The positivity of
bolized by the reactions the reaction rate5) and the physical meaning of the initial

- - state requires the following constraints:
A DA with rateT {5=T35>0,

S To=(2—)TY04+(r—1)T%=0, r=1, 0<p(0)<r.
DB —DA, and@D— AD with rateT 55=T35>0, H ot 00 P (67)

066123-15



MAURO MOBILIA AND PIERRE-ANTOINE BARES

PHYSICAL REVIEW E64 066123

Thus, for the model RDCIPAG5) described by the reac- of the Fisher typg5) [3]. In this section we show that for
tion rates(66) with the restrictiong67), the density and the some choices of the parametdrgaction ratesthe mean-
correlation functions can be computed from the results of théield formulation of the models BCBD and RDCI gives rise

model RDCI according to Eq62), for homogeneousgbut
randon) initial states described by E¢61).

VIIl. PROPAGATION OF A WAVE FRONT
AND THE FISHER WAVES

to Fisher-type equations. Then, from the results obtained in
Secs. V and VI, we study the propagation of the wave front
from a microscopic point of viewin so doing, the correla-
tion between particles is taken into account exactWye
show that the scenario predicted by Fisher’s theory fails in
one spatial dimension for the models under consideration. In

At the end of Sec. Il, we have stated that some reactionthis whole section, we adopt the same notation as that intro-
diffusion models are described at the mean-field level and iuced at the end of the Sec. Il

the continuum limit by nonlinear partial differential equation

(i) For the BCBD model, setting

(20'go+ 75— Flé>+J(r%é>2+<F28>2+4Fé°rii’—zriér%

¢BCBD_ 2[(1_,10

and with the additional definitions, we have

ki “BP=2(T 10)*+ (I'3)*+ 4T gol" 11— 2I' 1l 15>0

andk;“®P=2[T 15+ 1§~ (I'{5+T50)1>0,

(69

where the reaction rates appearing in E§8) and (69) are
those defined in E(39).
(ii) For the RDCI model, setting

2T gS—T15+ (T 1)2+4T 53030
2[T50—(I'5+T19)]

RDCI= (70

and with the additional definitions, we have

kRPC'=2/(r1121+4r19r1%0 and

K3PC'=2[(I9+T 13 —T3%1>0. (71)
The reaction rates appearing in Eqg0) and (71) are

those introduced in Sec. VI.

: 68)
00— (Iig+I1D] (

We want now to compare the prediction of the mean-field
theory with the results obtained directly from the micro-
scopic results derived in Secs. V and VI and thus compute
the time-dependent positiod(t) of the wave front and its
time-dependent widtlw(t). This is done according to the
formulas[14]

(gt L

X(t):x:guz (=) 2 and

L/2

w(t)2=2 >,

x=—12 (Ny())

2
X(nx(t)>_<;) —X(t)z. (74)

With the help of Egs.(42) and (52), and denoting with
a,8,y,Ef the quantities related to the model
€ (BCBD,RDC)) and definedcomputedlin Secs. V and VI,
we obtain in the long-time regimee({ 5, + y,)t>1 where the
time scales a$xL?,

X,(t) = \2uy(EF 8+ y)t[1+O(e~ @2\Luy] (75)

Under the conditiongi) and (i), at the continuum mean zpg

field level, we have for the BCBD and RDCI models with

P t)=phe(x,t)— ¢, where |=BCBD and RDCI,
equations of motion that are Fisher’s equations:

9~ kl -, 1~
atpMF(X t)= 2PMF(X’t)+k1pMF(th)

—Ky[ ppe(X,1)]2. (72)

t)= VU (Ef ,+ y)t[ 1+ O(e~ W2NLuy ]

where we have introduced the parametge L%/2(Ef 6
+y)t=0(1).

From these exact results, it appears that the location of the
wave front moves as/t. Moreover, in contrast to Fisher's
mean-field theory, the width of the wave front broadens as
Jt. These results, which have also been observed in the con-

(76)

AssumingL to be even and relabeling the sites of the chaintinyum limit for the one-dimensional reversible diffusion-

according to the shiftx—x—L/2, we consider an initial in-
homogeneous configuration with

(ny()) if xe[—L/2,0]
0 otherwise.

(nk(0))= (73

coagulation(without inpuy model[14], confirm that in one
spatial dimension the mean-field Fisher’s picture fails. In fact
Riordan et al. [14] have argued on the basis of extensive
numerical computations for the reversible diffusion-
coagulation(without inpud model that in higher dimension
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(=4) the latter model is in agreement with Fisher’s mean-studied with help of the traditional IPDF methdithe string
field predictions that the width of the wave front does notfunction then reduces to the empty-interval funcjidn ad-
broaden. Recently other authors who studied the same modeition to the above-mentioned quantities, which we were
as Riordaret al. (in dimensionsd>1) came to completely able to compute also for the RDCI model, we calculated the
different conclusion$22]. stationary interparticle functiofsee Eq(56)].

Furthermore, fop},:, Fisher’s equation admits two- On the basis of the exact results, we have developed an
mogeneous stationary states, namelypy,g() =k}/k}, approx'imative recursive sch'eme that Qllows to compute the
which is linearly stabld15] and;»'MF(oo)zo, which is lin- (othep instantaneous two-point correlation functigsse Eq.
early unstabl¢15]. This implies that at mean-field level, we (36)]. ) .

. o ~ Studying these models, we observed that the latter is char-
would have for the stationary densitgyr()=pyr(*®)

N which corresponds to two possible stead Statesacterized by a translationally invariant stationary distribution
| ax L P | P y for which, contrary to what happens to free-fermion systems,
pur(®)=ki/ks+ @), pye(*)= ¢,. However, from the ex-

: . - correlations are presenn,n, 1)(«) #[(ny(«))]?.
ECt expressions of the stationary de_ns{lm)_ and (50).’ we Later we studied the solution of the RDCI model and its
now that the models under consideration admit unique .~ . o

steady states that do not coincide with the mean-field predic:'—mpl_'catlons on qther systems re_lated via similarity t.ranSf(.)r'
tion. mations. In particular, we considered a class of similarity
transformationgsee Eqgs(58) and(59)] that transforms the
conventional empty-interval function into a more general
string function. In so doing we saw that it is possible to map

In this work we have extended the conventional IPDFthe RDCI model onto the BCBD one , which turns out to be
method. We introduced a string function, which is a naturalsolvable [via the similarity transformatior(58) and (59)]
generalization of the empty-interval function employed inwith the same constraints encountered in Sec. V. We there-
the IPDF method. We derived théve) constraints for the fore conclude that the approaches of Secs. V and VIl for
equations of motion to closf(see Egs.(8) and (9)]. We  solving the BCBD model are equivalent. However, it has to
solved the equation of motion of this string function on abe noticed that working with the generalized string function
periodic and finite lattice for the general form of a class ofas in Sec. V gives naturally access to the solution of the
models that cannot be mapped onto free-fermion systemBCBD model without requiring the solution of another
and that so fafto our knowledgg have been poorly under- (RDCI) model.
stood[see Eq(24)]. Then we specifically studied two mod- ~ We also have identified a model of reversible diffusion
els: The first one, which is a model with branching, coagu-coagulation with particles input and pair annihilation
lation, birth, and death processgse BCBD mode), can be  (RDCIPA), which can be mapped, for some choices of the
viewed as a generalization of the voter model and/or as areaction rategsee Eqs(66) and(67)], onto the RDCI model.
epidemic model. The BCBD model is an example of a modeFor this RDCIPA model all the quantities previously com-
that cannot be solved directly by the traditional IPDF puted for the RDCI can be immediately obtained via the
method. For this model, under certain restrictions on the resimilarity transformatiorisee Eq.(62)].
action rategsee Eq(39)], the density, the noninstantaneous  Finally we observed that on some parameter manifold, the
two-point, as well as the exact nearest neightiostanta- mean-field approximation of the BCBD and RDCI models
neous correlation functions have been analyzed: the steadgre describedn the continuum limit by the so-called Fisher
stateg[see Eqs(40) and(41)] as well as the dynamical ap- equations, which predict that an inhomogeneous initial con-
proach towards the latter have been computed exgstlg figuration will evolve without broadening of the wave front
Eqgs.(43) and(44)]. In particular the relaxational spectrum as in the density of particles. Computing the width of the wave
well as the the inverse of the relaxation time have been obfront, which broadens agt [see Eq(76)], we show that the
tained[see Eq(42)]. A similar analysis has been performed Fisher's mean-field description fails in one dimension. An-
for a reversible diffusion-coagulation model with input of other failure of the mean-field theory is observed when one
particles model. The lattgwith the usual restriction that the compares the mean-field predictions for the steady states of
coagulation rate coincides with the diffusion onean be the density with the exact results.
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