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Generalized empty-interval method applied to a class of one-dimensional stochastic models
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In this work we study, on a finite and periodic lattice, a class of one-dimensional~bimolecular and single-
species! reaction-diffusion models that cannot be mapped onto free-fermion models. We extend the conven-
tional empty-interval method, also called interparticle distribution function~IPDF! method, by introducing a
string function, which is simply related to relevant physical quantities. As an illustration, we specifically
consider a model that cannot be solved directly by the conventional IPDF method and that can be viewed as a
generalization of thevoter model and/or as anepidemicmodel. We also consider thereversiblediffusion-
coagulation model with input of particles and determine other reaction-diffusion models that can be mapped
onto the latter via suitablesimilarity transformations. Finally we study the problem of the propagation of a
wave front from an inhomogeneous initial configuration and note that the mean-field scenario predicted by
Fisher’s equation is not valid for the one-dimensional~microscopic! models under consideration.
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I. INTRODUCTION

Reaction-diffusion models~RD! play an important role in
the description of classical interacting many-particle no
equilibrium systems and have been extensively investiga
in the last decade@1,2#. Often these systems have be
treated by mean-field techniques~e.g., rate equations! that
give rise to nonlinear partial differential equations~such as,
e.g., the Fisher equation@3#!. The latter represent difficul
mathematical problems: e.g., the Fisher equation canno
general, be solved exactly. The mean-field methods can
curately describe the behavior of RD systems inhigher di-
mensions, where the correlations do not dramatically chan
the physics of the models. However, in one spatial dimens
where the fluctuations play a crucial role, these mean-fi
treatments fail. In this sense, a satisfactory understandin
RD models in lower dimensions requiresexact solutions,
which are scarce. In some cases, however, some RD mo
are known to be solvable. These cases can essentiall
classified into four categories:~i! models for which the equa
tions of motion of correlation functions are closed@4#; ~ii !
the free-fermionmodels@5# ~or systems that can be mappe
onto the latter, see@2,6#!; ~iii ! some other one-dimensiona
RD models can be solved by thematrix ansatzmethod@7#
first introduced to study the steady states of the asymme
exclusion process and which has been extended to other
tispecies RD models where the total number of particle
conserved, a dynamical version of the matrix ansatz@8# has
also been proposed to study the dynamical properties of
models for which the equations are closed~on periodic as
well as open chains!; ~iv! some other one-dimensional mo
els can be solved by the empty-interval method, also ca
the interparticle distribution function~IPDF! method@9–12#,
first introduced for the study of the diffusion-coagulatio
model. The solution of various one-dimensional RD mod
have been obtained from the diffusion-coagulation model
similarity transformations@2,13#. It has been established th
the latter solvable models correspond to free-fermion s
tems@2#.

The purpose of this work is to present a generalization
the IPDF method and to apply this technique to solve a c
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of one-dimensional stochastic models that cannot be map
onto free-fermion systems. In fact much attention has b
given to free-fermion systems in various contexts~usingfer-
mionicalgebra@5# or via thetraditional IPDF method, in the
continuum limit@9,10# as well as on discrete lattice@11,13#!.
The situation is different for the models considered here,
which only a few exact results are known.

The paper is organized as follows. In the next section
briefly review the formalism that we employ. In Sec. III w
introduce the string function, which is the key to our analy
and determine the constraints necessary to have solv
situations. In Sec. IV we solve the general equations of m
tion for the string functions of reaction-diffusion models th
cannot be mapped onto free-fermion systems. The latter
vides the exact expression of the density and the insta
neous nearest-neighbor~two-point! correlation function. We
also present an approximative, and, recursive schem
compute the ~other! instantaneous two-point correlatio
functions. In Sec. V, we specifically consider a model w
branching and coagulation reactions that cannot be so
directly by the traditional IPDF method. In Sec. VI, we solv
a reversible diffusion-coagulation model with external inp
of particles. In Sec. VII, we take advantage of the results
the previous section to solve other related models via si
larity transformations. In Sec. VIII we study, for the mode
introduced and solved in Secs. V and VI, the problem of
propagation of a wave front starting from an inhomogene
initial state and observe that the mean-field scenario p
dicted byFisher’s equation@3,14,15# is not valid at the mi-
croscopic level. Finally, Sec. IX is devoted to the conclusio

II. THE FORMALISM

Before generalizing the IPDF method, it is useful
briefly review the so-calledstochastic Hamiltonianformal-
ism .

It is known that models of stochastic hard-core partic
are soluble on some manifold on which the equations
motion of their correlation functions close@4#. In this work,
we concentrate on one-dimensional bimolecular sing
species reaction-diffusion systems.
©2001 The American Physical Society23-1
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Consider a periodic chain withL sites~labeled from 1 to
L). On the lattice, local bimolecular reactions betwe
single-species particlesA, with a hard core, take place. Eac
site can be empty~denoted by the symbol 0) or occupied
most by a particle of typeA denoted in the following by the
index 1 . The reactions occurring on the sitesj and j 11 are
specified by the transition rates, which here are assume
be site dependent, according toGab

gd , where

a,b,g,d50,1: ; ~a,b!Þ~g,d!, Gab
gd : a1b→g1d.

Probability conservation implies

Gab
ab52 (

(a,b)Þ(a8,b8)

Gab
a8b8 andGab

gd >0, ; ~a,b!Þ~g,d!.

For example, the rateG11
10 corresponds to the reactionAA

→AB andG11
1152(G11

101G11
011G11

00).
The state of the system is represented by the ketuP(t)&

5($n%P($n%,t)u$n%&, where the sum runs over the 2L con-
figurations. At sitei the local state is specified by the k
uni&5(10)T if the site i is empty anduni&5(01)T if the site
i is occupied by a particle of typeA(1) .

It is by now well established that a master equation can
rewritten formally as an imaginary time Schro¨dinger equa-
tion: (]/]t)uP(t)&52HuP(t)&, where H is the stochastic
Hamiltonian that governs the dynamics of the system.
general, it is neither Hermitian nor normal. Its constructi
from the master equation is a standard procedure~see, e.g.,
@1,2#! The evolution operatorH5( j 51

L H j , j 11 acts locally on
two adjacent sites, with

2H j , j 115S G00
00 G01

00 G10
00 G11

00

G00
01 G01

01 G10
01 G11

01

G00
10 G01

10 G10
10 G11

10

G00
11 G01

11 G10
11 G11

11

D ,

where the same notations as in Refs.@4,16,17# have been
used. Probability conservation implies that each column
the above representation sums up to zero.

The left vacuum̂ x̃u, which is defined aŝx̃u[($n%^$n%u,
locally has the representation̂x̃u5(11)^ (11) with the
property^x̃uH j , j 1150.

Below we shall assume an initial stateuP(0)& and inves-
tigate the expectation value of an operatorO ~observables
such as density, etc.!: ^O&(t)[^x̃uOe2HtuP(0)&. For general
s-species bimolecular reaction-diffusion systems, there
(s11)4 possible rates that have to fulfill the (s11)2 prob-
ability conservation constraints. Thus generals-species bi-
molecular reaction-diffusion systems are characterized
(s11)42(s11)2 independent parameters@16,17#. If one
imposes on these parameters 2s3 appropriate constraints, th
equation of motion of correlation functions close and t
system is formally soluble in arbitrary dimensions. Here,
focus on the cases51, and so we have 1624512 indepen-
dent rates and two closure constraints.
06612
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For single-species bimolecular processes, with the n
tions

A1[G00
011G00

11, B1[G10
011G10

112G00
012G00

11,

C1[G01
001G01

101G00
011G00

11,

D1[C12~G10
011G10

111G11
001G11

10!,

A2[G00
101G00

11, B2[G01
101G01

112G00
102G00

11,

C2[G10
001G10

011G00
101G00

11,

D2[C22~G01
101G01

111G11
001G11

01!, ~1!

the closure constraints are the following@4#:

D250⇒G00
101G00

112~G11
001G11

01!5G01
101G01

112~G10
001G10

01!,

D150⇒G00
011G00

112~G11
001G11

10!5G10
011G10

112~G01
001G01

10!,

~2!

with the help of the relationships@4#,

2^nmHm21,m&5A11B1^nm21&2C1^nm&1D1^nm21nm&,

2^nmHm,m11&5A21B2^nm11&2C2^nm&1D2^nmnm11&.

~3!

The equation of motion of the density at sitem is ~on a
periodic chain!

d

dt
^nm&~ t !5

d

dt
^x̃unme2HtuP~0!&5A11A21B1^nm21&~ t !

1B2^nm11&~ t !2~C11C2!^nm&~ t !

1D1^nm21nm&~ t !1D2^nmnm11&~ t !. ~4!

In order to illustrate the physical meaning of the mod
studied in this work, let us consider the latter at the me
field level ~in the continuum limit!, i.e., we assume firs
^nx(t)&→rMF(x,t) and ^nxnx61&(t).@rMF(x,t)#2. At this
level of approximation, we note~see Sec. VIII! that the equa-
tion of motion ~4! of somemicroscopicreaction-diffusion
models studied in this work, provided thatD1,0 and D2
,0, is a nonlinear partial-differential equation of Fisher ty
@3,15,14#,

]

]t
r̃MF~x,t !5B

]2

]x2
r̃MF~x,t !1k1r̃MF~x,t !2k2@ r̃MF~x,t !#2,

~5!

with r̃MF(x,t)[rMF(x,t)2f. When A15A25A, B15B2
5B, C15C25C, and D15D25D,0, we have 2Df
[(C2B)1A(B2C)224AD, k1[2A(B2C)224AD.0,
which denotes the constant describing the growth andk2
[22D.0 is the constant describing the saturation acco
ing to the local dynamics@3,15,14#.
3-2
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GENERALIZED EMPTY-INTERVAL METHOD APPLIED . . . PHYSICAL REVIEW E64 066123
The Fisher equation~5! admits two homogeneous stead

states, namely,r̃MF(x,`)[r̃MF(`)5k1 /k2, which is stable,

and another unstable steady state:r̃MF(`)50.
Although the Fisher equation~5! cannot be solved exactly

it is known@15,14# that the approach towards the steady st

from inhomogeneous initial states@e.g., r̃MF(x,0)
5(k1 /k2)Q(x02x), whereQ(x8)51 if x8.0 andQ(x8)

50 otherwise# is characterized by awave front, r̃MF(x,t)
5 f (x2ct), propagating with a celerityc>2Ak1B and sat-
isfying the nonlinear differential equation

B
d2

dz2
f ~z!1c

d

dz
f ~z!1k1f ~z!2k2@ f ~z!#250@15#.

In this work we obtain the exact expression for the dens
from theN-body description of some reaction-diffusion mo
els ~on finite and periodic lattice!, for whichD15D2Þ0 and
for which, the mean-field description in the continuum lim
is given by a nonlinear partial-differential equation of t
Fisher type~5!. Therefore, with help of the~microcopic! ex-
act results obtained in Secs. V and VI, we are able, in S
VIII, to discuss the validity of the Fisher’s mean-field d
scription.

III. THE STRING FUNCTION

In this section we introduce the quantity, which is the k
to our analysis, i.e., the string functionSx,y(t). We also de-
rive the constraints for which the equation of motion of t
latter is a closed hierarchy. In the sequel, we solve the la
providing the density of particles.

Instead of considering the standard empty-interval fu
tion @9–13#, we focus here on the more general form (1<x
<y<x1L),

Sx,y~ t ![^~a2bnx!~a2bnx11!•••~a2bny22!

3~a2bny21!&~ t !, ~6!

wherea andb are nonvanishing numbers.
This expression reduces to the empty-interval funct

when a5b51 @9–13#. Hereafter, we will derive the equa
tion of motion of the quantitySx,y(t) and determine which
constraints are necessary and sufficient to close the latte
alternative approach would consist in considering the em
interval function@with a5b51 in Eq. ~6!# and obtaining a
solution of some related reaction-diffusion model via a sim
larity transformation. This approach has been extensiv
studied for the free-fermion models@11,13# where solutions
of RD systems are obtained from the solution of the~free-
fermion! diffusion-coagulation model. The latter approach
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investigated in Sec. VII. For 1<x<y,x1L, the equation of
motion of Sx,y(t) reads

d

dt
Sx,y~ t !52^~a2bnx!Hx21,x~a2bnx11!•••

3~a2bny21!&~ t !2^~a2bnx!

3~a2bnx11!•••~a2bny21!Hy21,y&~ t !

2 (
j 5x

y22

^~a2bnx!~a2bnx11!•••

3~a2bny21!H j , j 11&~ t !. ~7!

If the following five constraints are fulfilled, the dynamics o
Sx,y(t) is described by a closed hierarchy of equations
follows:

~1! aD152bB1 ;

~2! aD252bB2 ;

~325! G00
001S a2b

a D ~G00
101G00

01!1S a2b

a D 2

G00
11

5
a

b
~G00

002G10
00!2S a2b

b D ~G10
011G10

102G00
102G00

01!

2
~a2b!2

ab
~G10

112G00
11!

5
a

b
~G00

002G01
00!2S a2b

b D ~G01
011G01

102G00
102G00

01!

2
~a2b!2

ab
~G01

112G00
11!

5S a

bD 2

~G11
001G00

002G10
002G01

00!1
a~a2b!

b2

3~G11
101G11

011G00
101G00

012G01
102G10

012G10
102G01

01!

1S a2b

b D 2

~G11
111G11

002G10
112G01

11!. ~8!

The interesting point is that these five constraints are ge
ally independent of the previous ones, Eq.~2!. Therefore, in
general, models that are solvable via the approach prese
here are not on the ten-parameter manifold described by
~2! where the equation of motion of correlation functions
closed.
3-3
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When the constraints~8! are fulfilled, the equation of mo
tion of the string functionSx,y(t) on a periodic lattice ofL
sites is the following~for aC1ÞbA1 andaC2ÞbA2).1

d

dt
Sx,y~ t !5~aC12bA1!Sx11,y~ t !1~aC22bA2!Sx,y21~ t !

2
D1

b
Sx21,y~ t !2

D2

b
Sx,y11~ t !2~B11B21C1

1C2!Sx,y~ t !1FG00
001S a2b

a D ~G00
101G00

01!

1S a2b

a D 2

G00
11G~y2x21!Sx,y~ t !

~1<x,y,x1L !, ~9!

d

dt
Sx,x1L~ t !5LFG00

001S a2b

a D ~G00
101G00

01!

1S a2b

a D 2

G00
11GSx,x1L~ t !,

Sx,x~ t !51,

where the boundary conditionSx,x(t)51 is obtained from
the requirement that (d/dt)Sx,x11(t)52b(d/dt)^nx(t)&.

Let us note that whena5b51, we recover the usua
constraints of the IPDF method:G10

015G11
01, G01

105G11
10, G10

00

5G01
005G11

0050.

IV. SOLUTION OF THE EQUATION OF MOTION
OF THE STRING FUNCTION

The equations of motion for the string function have be
intensively studied for free-fermion systems both in the c
tinuum limit @9,10# and on discrete lattices~periodic and
open boundary conditions! @11–13#. However, for systems

1If aC15bA1 and aC25bA2 , b/a5C1 /A15C2 /A2 and the
equation of motion ofSx,y reads

d

dt
Sx,y~t!52

D1

b
Sx21,y~ t !2

D2

b
Sx,y11~ t !2~g1d!Sx,y~ t !

2~y2x21!dSx,y ~1<x,y,x1L !

d

dt
Sx,x1L~ t !52LdSx,x1L~ t !,

where

g1d[B11B21C11C2 and

d[2FG00
001S a2b

a D ~G00
101G00

01!1S a2b

a D 2

G00
11G .

An example of a model in which dynamics is described by suc
system of equations~with a5b) is the random sequential adsor
tion process of dimers,BB→AA @18#.
06612
n
-

that cannot be mapped onto free-fermion systems, a few
sults have been obtained: Doering and ben-Avraham@9# have
obtained the stationary concentration and the relaxation s
trum of a reversible diffusion-coagulation model on an in
nite lattice in the continuum limit. Later, Peschelet al. @12#
have studied the relaxation spectrum of the Fourier transf
of the string function on a periodic lattice with help of th
conventionalIPDF method.

It is useful to introduce the following notations:

a1

2
[aC12bA1Þ0,

a2

2
[aC22bA2Þ0,

b1

2
[2

D1

b
5

B1

b
,

b2

2
[2

D2

b
5

B2

b
,

d[2FG00
001S a2b

a D ~G00
101G00

01!1S a2b

a D 2

G00
11G ,

g1d[B11B21C11C2 . ~10!

Hereafter, we solve the equation of motion~9! for the case
dÞ0 (d50 corresponds to the free-fermion case!, D1Þ0,
andD2Þ0 with the additional condition,a25a1[aÞ0 and
b15b2[b, which corresponds to the restriction forunbi-
asedsystems.

We also introduce the following auxiliary function
Sx,y(t)5my2xRx,y(t), where we choose m[Aa1 /b2

5Aa/b andq5Aa1b25Aab, and we solve Eq.~9! for the
general case whereqÞ0 ~notice2 that D15D250⇒q50).
With these notations, the equation of motion~9! becomes

d

dt
Rx,y~ t !5

q

2 (
e561

$Rx1e,y~ t !1Rx,y1e~ t !%2gRx,y~ t !

2~y2x!dRx,y~ t ! ~1<x,y,x1L !, ~11!

d

dt
Rx,x1L~ t !52LdRx,x1L~ t !,

Rx,x~ t !51.

The stationary solution of the system~11! is obtained with
help of the properties of Bessel functions of first and seco
kind, respectively,Jn(z) andYn(z) @19#. In fact, the structure
of Eq. ~11! for 1<x,y,x1L suggests the ansatz

a

2The case whereD15D250 corresponds to the situatio
where the equations of motion ofall the correlation functions close
@see Eqs.~2! and ~4!#. For a translationally invariant system wit
initial density r(0)and withB11B2ÞC11C2, the density simply
reads

^nj~t!&5
A11A2

C11C22~B11B2!
1Fr~0!2

A11A2

C11C22~B11B2!
G

3exp@2$C11C22~B11B2!%t#.
3-4
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Rx,y~`!5ÃLJy2x1v~2q/d!1B̃LYy2x1v~2q/d!.

Inserting this expression into Eq.~11!, we obtainv5g/d.
Therefore, we have

Rx,y~`!5ÃLJy2x1g/d~2q/d!1B̃LYy2x1g/d~2q/d!.
~12!

The quantitiesÃL andB̃L are determined with the help of th
boundary conditions:
06612
Rx,x~`!515ÃLJg/d~2q/d!1B̃LYg/d~2q/d!

and

Rx,x1L~`!5ÃLJL1g/d~2q/d!1B̃LYL1g/d~2q/d!50.

It follows that
ring
ÃL52

YL1g/dS 2q

d D
JL1g/dS 2q

d DYg/dS 2q

d D2YL1g/dS 2q

d D Jg/dS 2q

d D , B̃L5

JL1g/dS 2q

d D
JL1g/dS 2q

d DYg/dS 2q

d D2YL1g/dS 2q

d D Jg/dS 2q

d D , ~13!

which, with Eq.~12!, provides the stationary expression forRx,y(`) and thus we obtain the stationary expression for the st
function,

Sx,y~`!5my2xFJL1g/d~2q/d!Yy2x1g/d~2q/d!2YL1g/d~2q/d!Jy2x1g/d~2q/d!

JL1g/d~2q/d!Yg/d~2q/d!2YL1g/d~2q/d!Jg/d~2q/d! G . ~14!
f
ec-

il-

to

m:

is

:

To solve the dynamical part of Eq.~11!, we seek a solu-
tion of the form Rx,y(t)2Rx,y(`)5(lr y,x

l e2lqt, which
leads to the following difference equation:

r y,x11
l 1r y21,x

l 1r y,x21
l 1r y11,x

l 12Fl2H g1d~y2x!

q J G r y,x
l

50 ~15!

with the boundary conditions

~Ld2lq!r x,x1L
l 50 and r x,x

l 50. ~16!

Introducing the notationE[(ql2g)/d, Eq. ~15! admits as
solution

r x,y
l 5ÃJy2x2E~2q/d!1B̃Yy2x2E~2q/d!,

whereÃ,B̃, and the~relaxation! spectrum$E% are determined
from the boundary conditions~16!, which imply

ÃJ2E~2q/d!1B̃Y2E~2q/d!50,
~17!

ÃJL2E~2q/d!1B̃YL2E~2q/d!50.

The only nontrivial solution of this system~for which Ã
Þ0 andB̃Þ0) requires

JL2E~2q/d!Y2E~2q/d!2J2E~2q/d!YL2E~2q/d!50,
~18!

or equivalently in terms of theLommel function@19#:
RL21,12E~2q/d!50, ~19!

which admitsL21 zeroes@12,20,19# with degeneracyL.
The latter are symmetrically distributed aroundL/2 ~which is
an eigenvalue ifL is even!. To obtain the complete set o
L(L21)11 eigenvalues, i.e., the complete relaxation sp
trum $Ei%,i 51, . . . ,L, of the string function~which has not
to be confused with the spectrum of the stochastic Ham
tonian H), one has to take into account the eigenvalueql
5Ld directly obtained from the boundary condition~16!.
Notice that in$Ei% the indexi 51, . . . ,L labels theL distinct
eigenvalues forming the relaxation spectrum. In order
have some more insight into the relaxation spectrum$Ei%,
i 51, . . . ,L, of the string-functionSx,y(t), we can take ad-
vantage from the fact that the following eigenvalue proble

~E2n!Fn5V~Fn211Fn11! ~1<n,L !,
~20!

F05FL50

admits as eigenvalues the (L21) zeroes of theLommel func-
tion RL21,12E(2V)50 @20,12#. Therefore, choosingV
5q/d, the problem of determining the relaxation spectrum
reformulated as that of solving the eigenvalue problem~20!,
MuF&&5EuF&&, whereM is a (L21)3(L21) symmetric
~but not Hermitian whenq has an imaginary part! tridiagonal
matrix and uF&& is a (L21)-component column vector
uF&&[(Fn51F2•••FL21)T. The general form of the matrix
M is the following:
3-5
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M5S 1 q/d 0 . . . . . . . . . 0

q/d 2 q/d 0 . . . . . . 0

0 q/d 3 q/d 0 . . . 0

0 � � � � � A

A � � � � � 0

0 . . . 0 � q/d ~L22! q/d

0 . . . . . . . . . 0 q/d ~L21!

D . ~21!

or small systems the (L21) distinct eigenvalues$Ei% of M can be computed analytically. ForL56, with V5q/d, we have

$Ei%5H 3,36A514V26A9124V214V4

2
J ,

here we still have to take into account the additional eigenvalueql5Ld. The spectrum depends on the sizeL of the system
nd this is, in particular, the case forE* [ minE$E%[eL , the smallest eigenvalue that governs the long-time behavior of th
ystem. For larger matrices we had to proceed numerically and forL@1, eL→e` andE* is a constant:E* 5e` . For L56,
e have the exact result

eL56532A514V21A9124V214V4

2
.

his expression can be considered as an excellent approximation for systems of sizeL@1 @see footnote~4!# and, in particular,
or e` . Numerical results show that the eigenvalues of Eq.~21! are ‘‘close’’ to the integers and thus never coincide,;L.
herefore, the long-time dynamics~of large systems, withL@1! is governed by the eigenvalue (V[q/d)

E* 5eL.32
A514S q

d D 2

1A9124S q

d D 2

14S q

d D 4

2
5eL56 , ~22!
o

re
on

ri-

s

i.e.,

ql* 5E* d1g5eLd1g. ~23!

This expression provides the inverse of the relaxation time
the model under consideration.

Having obtained the relaxation spectrum and the exp
sion of r y,x

l , the complete expression for the string functi
follows as

Sx,y~ t !2Sx,y~`!5my2x(
Ei

AEi
e2(Eid1g)t

3@Jy2x2Ei
~2q/d!YL2Ei

~2q/d!

2Yy2x2Ei
~2q/d!JL2Ei

~2q/d!#.

~24!

Here for simplicity we consider the translationally inva
ant ~but not necessarily uncorrelated! situation, when
06612
f

s-

Sx,y(t)5Sy2x(t). In this case, the coefficientsAEi
are ob-

tained from the initial condition according to

AEi
5 (

j ,n51

L

@N 21# i , j@Jn2Ej
~2q/d!YL2Ej

~2q/d!

2Yn2Ej
~2q/d!JL2Ej

~2q/d!#* @Sn~0!2Sn~`!#m2n,

~25!

whereN is a HermitianL3L matrix @see Eq.~30!#.
To clarify this point let us introduce the following vector

of the Hilbert spaceCL ~with the usual scalar product!:

uS&&[@$S1~0!2S1~`!%m21
•••$SL~0!2SL~`!%m2L#T

~26!

and
3-6
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uVEj
&&[S J12Ej

~2q/d!YL2Ej
~2q/d!2Y12Ej

~2q/d!JL2Ej
~2q/d!

A

JL212Ej
~2q/d!YL2Ej

~2q/d!2YL212Ej
~2q/d!JL2Ej

~2q/d!

0
D . ~27!
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In a vectorial formulation, the coefficientsAEj
are obtained

from the initial state of the system according to

uS&&5(
j 51

L

AEj
uVEj

&&. ~28!

Solving this equation, we formally obtain the expression
the coefficientsAEj

,

AEj
5(

j 51

L

@N 21# i , j^^VEj
uS&&, ~29!

whereN is HermitianL3L matrix whose entries read

@N# i , j[^^VEi
uVEj

&&5 (
n51

L

@Jn2Ei
~2q/d!YL2Ei

~2q/d!

2Yn2Ei
~2q/d!JL2Ei

~2q/d!#*

3@Jn2Ej
~2q/d!YL2Ej

~2q/d!

2Yn2Ej
~2q/d!JL2Ej

~2q/d!#. ~30!

With the help of the expression of the string function~24!,
we can compute the exact density of particles at sitex,

^nx~ t !&5
a2Sx,x11~ t !

b
. ~31!

In the nontranslationally invariant situation, we wou
proceed in a similar manner, but we would have to work w
vectors of the Hilbert spaceCL(L21)11. In this case we
would have to take into account the degeneracy of the eig
values ofM in order to compute theL(L21)11 compo-
nentsAE appearing in Eq.~24!. This is achieved by replacing
Ei with Ei ,d in Eq. ~24!, where the indexd labels the degen
eracy of the eigenvaluesEi , i 51, . . . ,L.

From Eq.~31!, we can also obtain the expression of t
noninstantaneous two-point correlation functio
^nx(t)nx0

(0)&. We should take into account the initial sta

uP8(0)&[nx0
uP(0)& instead ofuP(0)& in Eq. ~31!.

With Eq. ~24!, we can also compute theinstantaneous
nearest-neighbor~two-point! correlation functions,

^nxnx11&~ t !5
a21Sx,x12~ t !2a~Sx,x11~ t !1Sx11,x12~ t !!

b2
.

~32!
06612
r

n-

Although the present approach could be formally extende
obtain the exact and closed equations of motion of ot
stringlike functions, whose~eventual! resolution would pro-
vide the exact expressions of all instantaneous two-point
relation functions, in practice such equations turn out to
extremely difficult to solve. The only cases where the wh
hierarchy of equation has been completely solved are
free-fermion models. On the discrete~and finite! lattice these
solutions were obtained by Krebset al. @11# and in the con-
tinuum limit ~for the diffusion-coagulationAA→A model!
by ben-Avraham@10#. Unfortunately it is known that the
latter approaches cannot be extended to systems that ca
be mapped onto free-fermion systems@11,10#. Here we pre-
fer to take advantage of the quantitieŝnx(t)& and
^nxnx11(t)& and Sx,y(t), which we can compute exactly t
obtain approximative instantaneous two-point correlat
functions of the systems obeying the constraints~8!, whose
associated string functionSx,y(t) obeys the equation of mo
tion ~9!.

For technical convenience, we consider the translation
invariant situation@thus ^nx(t)&5r(t)# and expanding the
string function we have

S a

bD 2Fa2(y2x)Sy2x~ t !1
b~y2x!

a
r~ t !G

5 (
j 51

y21

~y2x2 j !^nj 1
nj 11 j&~ t !1•••1S b

aD m22

3 (
y2x. j 1. j 2. . . . . j m

^nj 1
nj 2

. . . nj m
&~ t !1•••

1by2x22^nxnx11•••ny21&~ t !. ~33!

From Eq.~33!, it is possible to obtain exact expressions r
lating a two-point correlation function with known quantitie
and higher-order correlation functions. As an illustration,
us first consider the case wherey2x53. Equation~33! im-
plies

^nxnx12&~ t !2
b

a
^nxnx11nx12&~ t !

5
Sx,x13

ab2
2

a2

b
1

3ar~ t !

b
22^nxnx11&~ t !. ~34!

For y2x54, Eq. ~33! with help of Eq.~34! leads to
3-7
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^nxnx13&~ t !2S b

aD 2

^nxnx11nx12nx13&~ t !

5
Sx,x14~ t !22aSx,x13~ t !

~ab!2
1S a

bD 2

2
2ar~ t !

b

1^nxnx11&~ t !. ~35!

This procedure can naturally be continued for every tw
point correlation functions. Therefore, for two-point corre
tion functions^nxnx1r&(t) of sites separated by a distancer,
using recursively the relations previously derived f
^nxnx1r 21&(t), ^nxnx1r 22&(t), . . . we obtain an equality
relating ^nxnx1r&(t) and an unknown (r 11)-point correla-
tion function@^nxnx11•••nx1r 21nx1r&(t)# to a combination
of known quantities, as in Eqs.~34! and ~35!.

It is therefore possible to obtain approximative expr
sions for the correlation function within the truncation a
proximation~for r even!,

^nxnx11•••nx1r 21nx1r&~ t !.^nxnx11&~ t !•••

3^nx1r 21nx1r&~ t !

5@^nxnx11&~ t !# r /2

and

^nxnx11 . . . nx1r 21nx1r&~ t !.@^nxnx11&~ t !# (r 21)/2r~ t !,

for r odd.
Within this mean-field-like approach, we obtain the fo

lowing approximative expressions for the two-point corre
tion functions:

^nxnx12&~ t !.
Sx,x13~ t !

ab2
2F21

br~ t !

a G^nxnx11&~ t !

2
3ar~ t !

b
2S a

bD 2

,

^nxnx13&~t!.
Sx,x14~t!22aSx,x13~t!

~ab!2
1F12SbaD

2

^nxnx11&~t!G
3^nxnx11&~ t !2

2ar~ t !

b
1S a

bD 2

,

A. ~36!

To conclude this section, let us comment on this recurs
procedure.

First of all, therecursivecharacter of the method appea
through the repeated use of Eq.~33! and of the relations
obtained for the other two-point correlation functions. T
advantages of this recursive mean-field-like method with
spect to the traditional mean field are the following.

~i! The procedure of truncation appears at the level of
three-point correlation functions.

~ii ! This approach is based on the explicit knowledge
the quantitiesSy2x(t), r(t) and ^nxnx11&(t).
06612
-

-

-

e

-

e

f

~iii ! This method does not give rise to nonlinear part
differential equations and/or to nonlinear self-consist
equations, which are generally difficult to solve and whi
appear from traditional mean-field methods. Conversely,
approach presented here gives directly~after the truncation
procedure! access to the~approximative! expressions of the
two-point correlation functions.

It follows from the exact expression~24! of Sx,y(t) that,
for the models under consideration in this work, the rela
string function approaches its steady state exponentially f
with an inverse relaxation time given by Eq.~23!. This result
is valid for an arbitrary initial state: the effect of the initia
condition only appears through multiplicative factorsAE . In
the translationally invariant situation we have the coefficie
~25!; other initial conditions do not affect the exponenti
nature of the relaxation~24! with the inverse of relaxation
time ~23!.

V. A MODEL THAT CANNOT BE SOLVED DIRECTLY
FROM THE CONVENTIONAL IPDF METHOD

In this section we consider a model that cannot be sol
directly by the conventional IPDF method. A brief account
the study of this model has recently been reported in@21#.
Here we complete and develop this preliminary work.

The dynamics of the model under consideration ta
place on a finite and periodic lattice. When a particle an
vacancy are adjacent to each other, abranching reactioncan
take place and the particleA can give birth to an offspring
(AB→AA and BA→AA) with rate G10

115G01
11; another

possible reaction is thedeathof the particle (AB→BB and
BA→BB) with rateG10

005G01
00. When two particles are ad

jacent, they cancoagulate(AA→AB andAA→BA) with
rateG11

105G11
01. In addition, when two vacancies are adjace

a particle can appear~birth process,BB→AB and BB
→BA) with rateG00

105G00
01. The dynamics of this branching

coagulation with birth and death processes~BCBD! model
can be encoded by the following reactions:

AB→AA andBA→AA with rateG10
115G01

11,

BB→BA andBB→AB with rateG00
015G00

10,

AA→AB andAA→BA with rateG11
105G11

01,

AB→BB andAB→BB with rateG10
005G01

00. ~37!

It should be emphasized that in this model, the effect
motion of the particles is realized by successive processe
branching, coagulation, birth, and death on neighboring p
of lattice sites, without anexplicit diffusion process.

The system described above can be viewed as an
demic model where particles can spontaneously app
disappear, have an offspring, and coagulate. It can also
viewed as a generalization of the voter model@2#, where the
presence/absence of particle is associated with an opi
~yes/no! and each site is associated with a human bei
3-8
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According to the dynamics of the model, each individu
changes his opinion at a rate proportional to the opinion
his neighbors.

For the model under considerationA15A25A5G00
10, B1

5B25B5G10
112G00

10, C15C25C5G10
001G00

10, D15D25D
5G10

001G00
102(G10

111G11
10). If D50, for the translationally

invariant situation with an initial densityr(0) of particles,
we have@whenBÞC, see footnote (2)#

^nx~ t !&5
A

C2B
1Fr~0!2

A

C2BGe22(C2B)t.

In this section we solve, with some restrictions on t
reaction rates, the above-mentioned model whenDÞ0, i.e.,
in the case where the equation of motion of the correlat
functions of the model give rise to an open hierarchy~4!. It
has to be stressed that this model can be casted into a
fermion form only whenG10

115G10
00 andG11

105G00
10 ~see@2# for

a complete classification of free-fermion systems!. Further-
more, this model cannot be solved~directly! by the tradi-
tional IPDF method~not applicable@9–12# in the presence o
the processesAB→BB;BA→BB and in the absence o
processesAB→BA;BA→AB; the latter should occu
with the same rate as the coagulation rates@9–12#!. The idea
is to choosesuitablea andb to close the equation of evolu
tion of Sx,y(t). This is achieved by imposing the followin
condition:

b

a
511

G11
10

G00
10

.1, ~38!

and the reaction rates fulfill
m
g

in

na
e

06612
l
f

n

ee-

G11
105G11

01.0, 2G00
1052G00

01>G10
115G01

11.0, and

G10
005G01

005
G11

10~2G00
102G10

11!

G00
10

>0. ~39!

We will see that the case treated in this section@with the
constraints~39!# can be obtained from the reversible mod
of diffusion coagulation with input of particles@reversible
diffusion coagulation with input of particles~RDCI! model#,
solved in the next section, via a similarity transformation.
fact, in Sec. VII, we investigate a local similarity transfo
mation that would map the generalSx,y(t) function onto the
empty-interval function ~with a5b51) and the RDCI
model onto the present BCBD model. In the sequel we sh
that such a mapping exists and establish that the approa
followed in this section and in Sec. VII are equivalent.

For the model~37! with the restriction~39! and from the
definitions ~10!, we havea5(2aG11

10/G00
10)(G00

102G10
11), b

52(2/a)(G00
102G10

11) and thus ab,0, m15m25m
52 i @sgn(a)#ua/bu1/2, and q5 i uabu1/2. We also haved
52bA/a.0 and@because of Eq.~39!# 0,uqu/d,1/2.

The subcaseG10
115G00

10 implies a5b5B5D50 and we
recover ~for CÞ0) ^nx(t)&5@a2Sx,x11(t)#/b5A/C
1@^nx(0)&2A/C#e22Ct.

Hereafter, we focus on the more general situation wh
Eqs.~39! are fulfilled with G10

11ÞG00
10, and thusaÞ0,bÞ0.

The stationary expression of the string function for th
model is given by the expression~14!. With help of the for-
mula ~31! and the ratio~38!, we obtain the following expres
sion for the stationary density of particles in the system:
ghbor
^nx~`!&5
1

b H a2mFJL1g/d~2q/d!Y11g/d~2q/d!2YL1g/d~2q/d!J11g/d~2q/d!

JL1g/d~2q/d!Yg/d~2q/d!2YL1g/d~2q/d!Jg/d~2q/d! G J . ~40!

Similarly, with help of Eqs.~31! and ~38!, we obtain the stationary expression of the instantaneous nearest-nei
correlation functions,

^nxnx11&~`!5
2ab^nx~`!&2a2

b2
1S m

b D 2FJL1g/d~2q/d!Y21g/d~2q/d!2YL1g/d~2q/d!J21g/d~2q/d!

JL1g/d~2q/d!Yg/d~2q/d!2YL1g/d~2q/d!Jg/d~2q/d! G . ~41!
ed

-

From Eqs.~40! and ~41! one can check that the syste
under consideration is acorrelated system of interactin
particles. In fact, one can see that̂ nxnx11&(`)
Þ^nx(`)&^nx11(`)&5@^nx(`)&#2, despite the fact that both
steady states~40! and ~41! are translationally invariant, the
stationary distribution is correlated, which is due to the
teracting character~hard core! of the particles. We should
emphasize that the presence of correlations in the statio
distribution is specific to the class of models considered h
-

ry
re

that cannot be mapped onto free-fermion systems3 ~see also
the model of the next section!.

3In fact, for the free-fermion systems such as the diffusion limit
with pair annihilation and creation model@5# and the related
diffusion-coagulation models@9–11#, it has been shown, for trans
lationally invariant systems, that^nxnx1r&(`)5@^nx(`)&#2,
; r .0.
3-9



e
e
s

:

u

e

e
ru

-
e

e

the

s-

rest

ion

nin-

n

es
the

MAURO MOBILIA AND PIERRE-ANTOINE BARES PHYSICAL REVIEW E64 066123
To study the dynamical properties of the model, we ne
the relaxation spectrum of the string function. As establish
in the previous section, the latter is obtained as the
of zeros of the following Lommel function
RL21,12E(2i uqu/d)50, where E[(ql2g)/d. Solving the
associate eigenvalue problem~20! ~in this case, the matrix
M, see Eq.~21!, is not Hermitian!.

For small systems the (L21) distinct eigenvalues$Ei% of
Eq. ~21! can be computed analytically. ForL56, we have
(V[q/d)

$E%5H 3,36A514V26A9124V214V4

2
J .

For larger matrices we had to proceed numerically. O
analysis~based on the spectrum of large matrices withL
<1000), shows that the spectrum$E% ~and therefore$ql%) is
always real and symmetric aroundL/2, which is an eigen-
value whenL is even. The other eigenvalues are not gen
ally integers, but for the central part of the spectrum~for
eigenvalues close ofL/2), the eigenvalues approach integ
values. This is not the case at the extremities of the spect
In particular, the smallest eigenvalueE* 5minE$E% is not an
integer and depends on the size of the system,E* 5eL.1.
However, for L@1, eL→e` , and E* is a constant,E*
5e`.1. ForL56, we have the exact result

eL56532A514V21A9124V214V4

2
,

with 1,eL56,32A21 1
4 A13. This expression can be con

sidered as an excellent approximation for systems of sizL
@1 and, in particular, fore` .4

Therefore, the long-time dynamics~of large systems, with
L@1) is governed by the eigenvalue

E* 5eL.32A514V21A9124V214V4

2
,

i.e.,

ql* 5E* d1g5eLd1g52FG00
10G10

111G11
10~2G00

102G10
11!

G00
10

1~eL21!~G00
101G11

10!G
.2G10

11

>0. ~42!

4As an illustration, for the caseG00
1053/10, G10

1151/2, G11
1051, and

G10
0051/3, with the expression above, we obtain~analytically!

eL5651.082 333 768 3. For larger systems (L510,25,40,1000), we
obtain numerically ~with an accuracy of 10210) e105e255e40

5e100051.082 333 769 7.
06612
d
d
et

r
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Equation~42! provides the inverse of the relaxation tim
of the system.

The dynamical approach towards the steady state of
density is obtained from the dynamical expression~24! of the
string function, according to formula~31! and with the ratio
~38!, we obtain

^nx~ t !&2^nx~`!&5S m

b D(
Ei

AEi
e2(Eid1g)t

3@J12Ei
~2q/d!YL2Ei

~2q/d!

2Y12Ei
~2q/d!JL2Ei

~2q/d!#,

~43!

where the coefficientsAEi
have been computed for the tran

lationally invariant situation in Eqs.~25!–~30!.
With help of Eqs.~24! and~31!, we obtain the expression

of the dynamical approach of the instantaneous nea
neighbor to its steady state~41!,

^nxnx11&~ t !2^nxnx11&~`!

5
a

b
$^nx~ t !&1^nx11~ t !&22^nx~`!&%1S m

b D 2

3(
Ei

AEi
e2(Eid1g)t@J22Ei

~2q/d!YL2Ei
~2q/d!

2Y22Ei
~2q/d!JL2Ei

~2q/d!#. ~44!

From Eqs.~24!, ~43!, and ~44! and with the help of Eqs.
~33!–~36!, we can also obtain the approximative express
of the other two-point correlation functions.

The result (43) can be extended to the case of the no
stantaneous two-point correlation functions^nx(t)nx0

(0)&.
It suffices to replace in Eq.~43! the coefficientsAEi

by those obtained from the initial conditio
^$) j 5x

y21@a2bnj (0)#%nx0
(0)&, instead ofSy2x(0).

Let us now mention the long-time behavior of quantiti
computed above. For the sake of simplicity we consider
translationally invariant situation, in the regime whereE* t
@1 @E* is the smallest eigenvalue~42!# we have

^nx~ t !&2^nx~`!&;S m

b DAE* e2(E* d1g)t

3@J12E* ~2q/d!YL2E* ~2q/d!

2Y12E* ~2q/d!JL2E* ~2q/d!#,

~45!
3-10
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^nxnx11&~ t !2^nxnx11&~`!

;
m2AE*

b2
e2(E* d1g)tFJ22E* S 2q

d DYL2E* S 2q

d D
2Y22E* S 2q

d D JL2E* S 2q

d D G1
2amAE*

b2
e2(E* d1g)t

3FJ12E* S 2q

d DYL2E* S 2q

d D2Y12E* S 2q

d D
3JL2E* S 2q

d D G . ~46!

It follows from the exact results~42!–~46! that the density
^nx(t)& and the two-point correlation function
^nx(t)nx0

(0)& ~noninstantaneous! and^nxnx11&(t) ~instanta-
neous! approach the steady state exponentially fast, as
string functionSx,y(t), with an inverse of relaxation time
given by Eq.~42!. In addition, in the sense of the approx
mative scheme~33!–~36!, these results are expected also
be valid for the more general correlation functio
^nxnx1r&(t)(r .1) and for arbitrary initial conditions: the
initial state only affects the multiplicative factorsAE of Eqs.
~43! and ~44! @for translationally invariant systems theAE
are given by Eq.~25!#. These statements are supported by
study of the subcaseG10

115G00
10 ~with CÞ0), which is solv-

able by conventional methods and in which the dynamic
expected to bequalitatively the same as the more gener
case considered here~especially foruG10

112G00
10u!1). For this

subcase the density has been computed previously~for arbi-
trary initial condition! and the two-point correlation func
tions read

^nx~ t !nx0
~0!&5

A

C
1F ^nxnx0

&~0!2
A

CGe22Ct

and

^nxny&~ t !5S A

CD 2

~12e22Ct!1^nxny&~0!e24Ct

1
A

C F ^nx~0!&1^ny~0!&2
A

CG~e22Ct

2e24Ct!, ~yÞx!.

VI. SOLUTION OF A REVERSIBLE DIFFUSION-
COAGULATION MODEL WITH INPUT OF PARTICLES

In this section we study a model of reversible diffusi
coagulation with input of particles, which can be solved
the conventional IPDF method. Particles can jump~provided
that the arrival site was previously empty! to the right and
the left with rateG10

015G01
10.0. We assume also that tw

adjacent particles can coagulate with the same rateG11
10

5G11
01 and that when a particle is adjacent to a vacancy
06612
e

e

is
l

a

branching process can occur with rateG10
115G01

11. In addition,
when two adjacent sites are empty, a particle can spont
ously appear on a site~input! with ~a finite! rate G00

105G00
01

.0. The dynamics of this RDCI model can be encoded
the following reactions:

AB↔BA with rateG10
015G01

10.0,

BB→BA andBB→AB with rateG00
015G00

10.0,

AB→AA andBA→AA with rateG10
115G01

11,

AA→AB andAA→BA with rateG11
105G11

01. ~47!

In order to apply the~conventional! IPDF method, we
require that the coagulation and diffusion rates are@9–12#

G10
015G11

01 and G01
105G11

10. ~48!

Therefore with Eq.~48!, we haveG10
015G11

015G10
015G11

10.0
and are left with 42153 independent reaction rates for th
model ~47!.

Before proceeding with the solution of this model som
comments are in order. To our knowledge this model h
been studied in the continuum limit on an infinite chain~for
the translationally invariant situation! by Doering and ben-
Avraham@9#. The latter obtained, in this limit, the stationar
concentration of particles, the stationary interparticle fun
tion, and the relaxation spectrum as the zeroes of some
functions. In their work, Doering and co-workers consider
an infinite chain with lattice spacingnx ~herenx51) in the
continuum limit (nx→0). On this infinite chain, the reac
tions occuring are the symmetric diffusion and coagulat
with ratesG10

015G01
105G11

015G11
105D/(nx)2, the symmetric

branching processes with rateG10
115G01

115v/nx, and the in-
put of particles with rateG00

105G00
015Rnx.

In this section we want to solve the model~47! with the
restrictions~48! on a finite and periodic lattice ofL sites.
According to the definitions~10!, for this section we have
a15a2[a[2(C12A1)52G01

10.0, b15b2[b[22D1

52B152(G10
011G10

112G00
10), d5A11A252G00

10.0, and g
1d52(2G01

101G10
11).

Hereafter, we thus solve the model~47! with the con-
straints~48!, which is a model described by 42153 inde-
pendent paramaters~reaction rates!, for the case where the
input of particles is nonvanishing~i.e.,d.0) andDÞ0. The
cases whered50 have been extensively studied in the co
tinuum limit @9,10# as well as on discrete lattices@11#: these
models have been mapped onto free-fermion mod
@11,2,6#. In addition, whenD5b50, for the translationally
invariant situation and an initial densityr(0) of particles, we
have@whenBÞC, see footnote (2)#

^nx~ t !&5
A

C2B
1Fr~0!2

A

C2BGe22(C2B)t. ~49!
3-11
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For the model under consideration here, we havem[Aa/b
and q5Aab. As a.0 and b>0, with b50⇒D50, we
focus on the case whereqÞ0. One should be cautious wit
the fact thatq and m can be imaginary, in which case th
sign ambiguity is fixed by requiring thatqm5a.

The equation of motion of the string function associa
with this model is thus of the form~9!, which has been
s-

te
an

e

ob
n

ot
um
-
lle
-

ap

06612
d

solved in Sec. IV.
To compute the relevant physical quantities, we proce

as in the previous section. In fact the expressions for
density, correlation function, and the current of particles c
be immediately obtained from Eqs.~40!–~45! whenb/a51.
Hereafter, for the sake of completness and clarity we qu
these expressions
^nx~`!&512mFJL1g/d~2q/d!Y11g/d~2q/d!2YL1g/d~2q/d!J11g/d~2q/d!

JL1g/d~2q/d!Yg/d~2q/d!2YL1g/d~2q/d!Jg/d~2q/d! G , ~50!

^nxnx11&~`!52^nx~`!&211m2FJL1g/d~2q/d!Y21g/d~2q/d!2YL1g/d~2q/d!J21g/d~2q/d!

JL1g/d~2q/d!Yg/d~2q/d!2YL1g/d~2q/d!Jg/d~2q/d! G . ~51!
ll

e

.

is

of

ned
We again note that the expressions~50! and ~51! are inde-
pendent of the site labelx and therefore correspond to tran
lationally invariant stationary quantities.

As for the BCBD model, from Eqs.~50! and~51! one can
check that the RDCI model is a correlated system of in
acting particles, characterized by a translationally invari
but correlated stationary distribution: ^nxnx11&(`)
Þ^nx(`)&^nx11(`)&5@^nx(`)&#2.

To study the dynamical properties of the model, we ne
the relaxation spectrum$Ei%, i 51, . . . ,L, of the string func-
tion. As established in the previous section, the latter is
tained as the set of zeros of the following Lommel functio
RL21,12E(2q/d)50, whereE[(ql2g)/d, which are com-
puted solving the associated eigenvalue problem~20!. Notice
that whenq is real the matrixM, Eq. ~21! is Hermitian,
otherwise (q is imaginary! M is anti-Hermitian.

Again the spectrum$E% ~and therefore$ql%) turns out to
be real ~even whenM is anti-Hermitian! and symmetrically
distributed aroundL/2, which is an eigenvalue whenL is
even.

When G00
10.G01

101G01
11, then q is imaginary with 0

,uqu/d<1/2. Whenq is imaginary, the eigenvalues are n
generally integers, but for the central part of the spectr
~when the eigenvalues are close toL/2), the eigenvalues ap
proach integer values. This is not the case for the sma
eigenvalueE* 5minE$E%, which is not an integer and de
pends on the size of the system:E* 5eL.1. However, for
L@1, eL→e` and E* is a constant:E* 5e`.1. The ex-
pression~22! can again be considered as an excellent
r-
t

d

-
:

st

-

proximation for systems of sizeL@1 and, in particular, for
e` . We can then show that forq imaginary, the quantityeL
.1. In fact one can compute~approximative! bounds foreL
with L@1. This is achieved with help of Eq.~22!, namely,

1,eL56<32A21 1
4 A13 .

WhenG00
10,G01

101G01
11, q is real. The eigenvalues are sti

symetrically distributed aroundL/2 ~which is still an eigen-
value whenL is even!. In this case, the smallest eigenvalu
E* [eL can be negative ~e.g., eL56,0 if q/d
.1.299 07 . . . ). However, 22G01

10/G00
10&eL&1 ~in fact,

22G01
10/G00

10,eL56<1), and thus, whenq is real, we
have, ql* 5eLd1g52@2G01

101G10
111(eL21)G00

10#>2(G01
10

1eLG00
10).0. Again, for large systems (L@1) the expres-

sion ofeL is well approximated by the exact expression~22!
of eL56.

WhenG00
105G01

101G01
11, thenD5q50 and we recover Eq

~49!, with B5D50.
In definitive, the long-time dynamics of large systems

governed by the eigenvalueE* .0 according to Eq.~22! for
L@1. This means that the inverse of the relaxation time
the system reads

ql* 5E* d1g5eLd1g52@2G01
101G10

111~eL21!G00
10#.0.

~52!

The dynamical parts of the above quantities are obtai
similarly from Eqs.~43! and ~44!, settingb/a51 in these
expressions,
^nx~ t !&2^nx~`!&5m(
Ei

AEi
e2(Eid1g)t@J12Ei

~2q/d!YL2Ei
~2q/d!2Y12Ei

~2q/d!JL2Ei
~2q/d!#, ~53!

^nxnx11&~ t !2^nxnx11&~`!5$^nx~ t !&1^nx11~ t !&22^nx~`!&%1m2(
Ei

AEi
e2(Eid1g)t@J22Ei

~2q/d!YL2Ei
~2q/d!

2Y22Ei
~2q/d!JL2Ei

~2q/d!#, ~54!
3-12
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where the coefficientsAEi
have been computed in the tran

lationally invariant situation in Eqs.~25!–~30!.
From Eqs.~53!, ~54!, and ~24!, we can compute for this

RDCI model the approximative expression for all two-po
correlation functions according to the scheme~33!–~36!.

The long-time behavior of the quantities~53! and~54! are
also obtained as explained in the previous section and
particular the long-time behavior of the density is given
Eq. ~45!, where the smallest eigenvalueE* is the quantity
obtained in Eq.~52!.

As in the case of the model BCBD, and for the sam
reasons, the density and the two-point correlation functi
~instantaneous and noninstantaneous! relax exponentially
fast to the steady state with an inverse of the relaxation t
given by Eq.~52!.

Another relevant quantity that one can compute for t
model is the so-called interparticle functionpx,y(t) @9,10#.
The latter gives the probability, a timet, for a particle at site
x21 to have as a next neighbor, a particle at a distant
th
m

es
g
f

n
t
ur
ee
io

06612
t

in

e
s

e

s

te

y2x.0. To obtainpx,y(t), we seta5b51 and the string
functionSx,y(t) reduces to the empty-interval function@9,10#
Sx,y(t)5^) j 5x

y21(12nj )&(t), which is associated with the
probability of having a sequence of holes starting from
site x and of lengthy2x. As shown by Doering and co
workers@9,10#, it is possible to relate the density of particle
the empty-interval functionSx,y , and the interparticle
function px,y(t):Sx,y11(t)22Sx,y(t)1Sx,y21(t)5^(1
2nx)•••(12ny22)@ny212(12ny21)ny#&(t), Therefore,
with r(t)5(1/L)( j^nj (t)&, for the translationally invariant
situation@the inverse ofr(t) measures the average distan
between adjacent particles#, we have

px,y~ t !5py2x~ t !5
@Sx,y11~ t !22Sx,y~ t !1Sx,y21~ t !#

r~ t !
.

~55!

In particular, in the stationary case, we have
px,y~`!5
Sx,y11~`!22Sx,y~`!1Sx,y21~`!

r~`!

5my2xH JL1g/dS 2q

d D FmYy2x111g/dS 2q

d D1m21Yy2x211g/dS 2q

d D22Yy2x1g/dS 2q

d D G
JL1g/dS 2q

d D FYg/dS 2q

d D2mY11g/dS 2q

d D G2YL1g/dS 2q

d D FJg/dS 2q

d D2mJ11g/dS 2q

d D GJ
2my2xH YL1g/dS 2q

d D FmJy2x111g/dS 2q

d D1m21Jy2x211g/dS 2q

d D22Jy2x1g/dS 2q

d D G
JL1g/dS 2q

d D FYg/dS 2q

d D2mY11g/dS 2q

d D G2YL1g/dS 2q

d D FJg/dS 2q

d D2mJ11g/dS 2q

d D GJ . ~56!
f

r-
s.
e
n

he
To conclude this section, let us point out the fact that
results~50!–~56! can be immediately generalized to syste
which, in addition to the processes~47!, also include the
~adjacent! pair-creation reactionBB→AA, with rate G00

11.
In fact, it suffices to replaceG00

10 with G00
101G00

11 in Eqs.
~50!–~56!.

We also would like to emphasize the fact that the expr
sions~50!–~56! are different from those obtained by Doerin
and ben-Avraham@9# who considered the continuum limit o
this model on an infinite chain.

VII. SOLUTION OF MODELS „WHICH CANNOT BE
MAPPED ONTO FREE-FERMION SYSTEMS …

VIA SIMILARITY TRANSFORMATIONS

In Secs. V and VI we have solved two different reactio
diffusion ~the BCBD and the RDCI! models, which canno
be mapped onto free-fermion systems. It is therefore nat
to wonder whether or not there exists a mapping betw
these models, transforming the empty-interval funct
e
s

-

-

al
n

n

^) j 5x
y21(12nj )&(t) into another string function of the form

^) j 5x
y21(12@b/a#nj )&(t). In this section we study the class o

models that can be obtained from the~RDCI! model, ana-
lyzed in Sec. VI through a class of local similarity transfo
mations. In so doing we will answer the following question

~i! Does a similarity transformation, which maps th
RDCI onto the BCBD model and the empty-interval functio
~with a5b) onto a string function~with b/aÞ1) exist?

~ii ! If so, does the mapping provide the solution of t
model BCBD for the same constraints~39! considered in
Sec. V?

Let us consider theoriginal stochastic HamiltonianH,
through the~local! similarity transformationB; defineH̃ as
@11,2,13#

H̃[B 21HB. ~57!

Because of the requirement that̂Õ(t)&@H̃,uP̃(0)&]
5^O(t)&@H,uP(0)&], which implies that
3-13
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^x̃uOe2HtuP~0!&5^x̃uÕe2H̃tuP̃~0!&

5^x̃uÕB 21e2HtBuP̃~0!&

5^x̃uOBB 21e2HtBB 21uP~0!&,

it is clear that under this transformation, the observableO,
and the initial stateuP(0)& transform according toÕ[OB
and uP̃(0)&[B 21uP(0)&, where we assume homogeneo
~uncorrelated, yet random! initial states with density 0
<r(0)<1 of particles,

uP~0!&5S 12r~0!

r~0!
D .

In this section we focus on local transformations of the fo
@2,11,13#

B5 ^ j 51
L bj , ~58!

wherebj denotes a 232 matrix acting at sitej such that the
stochasticity condition̂x̃uBH̃50 is fulfilled. In addition, in
order to transform the empty-interval function into a mo
general string function we want to consider transformatio
that map the operator 12nj onto 12ñ j[12rn j , wherer
[b/a. Peschelet al. @12# have shown that the transformatio
~58!, with

bj[S 1 12r

0 r D
j

~59!

satisfies this property. Through this transformation, acco
ing to Eq. ~57!, the stochastic Hamiltonian related to th
RDCI model transforms into the following stochastic Ham
tonian:

H̃ j , j 115S G̃00
00 G̃01

00 G̃10
00 G̃11

00

G̃00
01 G̃01

01 G̃10
01 G̃11

01

G̃00
10 G̃01

10 G̃10
10 G̃11

10

G̃00
11 G̃01

11 G̃10
11 G̃11

11

D ,

where the nondiagonal entries read

G̃00
015G̃00

10/r 5G00
10/r , G̃00

1150,

G̃01
005G̃10

005~2G00
102G10

11!~r 21!/r ,

G̃01
105G̃10

015@~G10
112G00

10!~r 21!1rG01
10#/r ,

G̃01
115G̃10

115G10
11/r ,

G̃11
0052~r 21!@~r 21!~G10

112G00
10!1rG01

10#/r ,

G̃11
015G̃11

105@G00
10~r 21!21~22r !~~r 21!G10

111rG01
10!#/r .

~60!
06612
s

-

The uncorrelated and homogeneous, but random, in
state becomes

uP̃~0!&5S 12
r~0!

r

r~0!

r
.
D . ~61!

One has to ensure that all the reaction rates appearing in
~60! are >0, which requires thatr>0 and that 0<r(0)/r
<1. Therefore we have the necessary conditionr>r(0)
>0.

According to the transformations~58! and ~59!, the
empty-interval function̂ ) j 5x

y21(12nj )&(t) is mapped onto

the string function^) j 5x
y21(12ñ j )&(t)5^) j 5x

y21(12rn j )&(t)
and therefore, the statistical quantities for the model
scribed by the stochastic HamiltonianH̃ are obtained from
the related quantities computed in Sec. VI for the mo
RDCI as

^nx~ t !&H̃,uP̃(0)&5
1

r
^nx~ t !&H,uP(0)& ;

^nxnx1y&H̃,uP̃(0)&~ t !5
1

r 2
^nxnx1y&H,uP(0)&~ t ! ~y.0!,

~62!

where ^nx(t)&H,uP(0)& and ^nxnx11&H,uP(0)&(t) have been
computed in Eqs.~53! and ~54!.

We will now consider two specific models described
Eq. ~60!.

~a! To answer the questions~i! and~ii !, we seek, through
the mapping~58! and ~59!, a model of the BCBD type and

thus require G̃10
015G̃01

105G̃11
0050, as for the BCBD

model considered in Sec. V and infer from Eq.~60!,
(G10

112G00
10)(r 21)1rG01

1050 (rÞ1), which implies

r 5
G10

112G00
10

G10
111G01

102G00
10

>0 . ~63!

Replacing the expression~63! in Eq. ~60!, we obtain the
reaction rates of the BCBD model in terms of the rates of
original ~RDCI! model. In order to have a physical BCBD

model, we have to require the reaction ratesG̃ ’s to be posi-
tive. We now take advantage from the fact that a version

the BCBD model has been solved in Sec. V, whereG̃10
00

5(G̃11
10/G̃00

10)(2G̃00
102G̃10

11). It is therefore possible to check
from Eqs.~60! and ~63!, that this relation still holds in this
case and parametrize the reaction rates~60! as follows:
3-14



se
e
th
e

to

to

in-
ave

GENERALIZED EMPTY-INTERVAL METHOD APPLIED . . . PHYSICAL REVIEW E64 066123
G̃00
105G00

10/r , G̃10
115G10

11/r , G̃11
105~r 21!G̃00

10,

G̃10
005

G̃11
10

G̃00
10

~2G̃00
102G̃10

11!, r 511
G̃11

10

G̃00
10

.1. ~64!

The requirement of positivity of these rates~64! leads to

2G̃00
10.G̃11

10. Thus, the reaction rates~64! describing the
BCBD model from the RDCI model are identical to tho
considered in Sec. V for solving the BCBD directly from th
generalized string function. It is therefore easy to obtain
density and the correlation functions of the BCBD mod
from the RDCI model inverting the relation~64! and using
Eqs.~61! and~62!. As an illustration, we consider the BCBD

model with ratesG̃00
1051, G̃10

1151/2, G̃11
1052, and G̃10

0053,
a
c
th
o

o
d

ve
ar
o
o

s-
o
nd
io
c

om
r-
a
ai
-

06612
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which imply that r 53. Such a model is thus mapped on
the RDCI model with the ratesG00

1053,G10
1153/2,G01

105G11
10

51. In this case the density of the BCBD model is related
the density of the RDCI model according to Eq.~62!,

^nx~ t !& (G̃
00
1051,G̃

10
1151/2,G̃

11
1052,G̃

10
0053;uP̃(0)&)

BCBD

5
1

3
^nx~ t !& (G

00
1053,G

10
1153/2,G

01
105G

11
1051;uP(0)&)

RDCI
.

In particular we have seen that the stationary density is
dependent of the initial state and thus, in this case, we h
@see Eqs.~40! and ~50!#
^nx~`!& (G̃
00
1051,G̃

10
1151/2,G̃

11
1052,G̃

10
0053)

BCBD
5

1

3
^nx~`!& (G

00
1053,G

10
1153/2,G

01
105G

11
1051)

RDCI

5
1

3
1

iA2

3 FJL11/6~A2i /3!Y7/6~A2i /3!2YL11/6~A2i /3!J7/6~A2i /3!

JL11/6~A2i /3!Y1/6~A2i /3!2YL11/6~A2i /3!J1/6~A2i /3!
G

.0.2401 ~L@1!.
l

l

We are now in a position to answer the questions~i! and
~ii !.

We have shown that there exists a similarity transform
tion (58) and (59) that transforms the empty-interval fun
tion onto the generalized string function and that maps
RDCI onto the BCBD model, with the same constraints
solvability as the constraints (39) imposed in Sec. V. We c
clude that the present approach and the method devise
Sec. V are equivalent.

One additional comment on this equivalence is howe
useful at this point. Although both mentioned methods
equivalent, the method devised in Sec. V is in a sense m
convenient because it is direct: solving the equation of m
tion of the adequate~generalized! string function solves di-
rectly the BCBD model. Conversely, via the similarity tran
formation we first solve the RDCI model, which is a task
the same difficulty as that of solving the BCBD model, a
then find an adequate and nontrivial similarity transformat
~where the new reaction rates should be interpreted corre
in terms of the original ones!.

~b! Let us now consider a model that can be solved fr
the solution of the RDCI model via the similarity transfo
mation ~58! and ~59!. The model under consideration is
reversible diffusion coagulation with particles input and p
annihilation~RDCIPA!, in which the dynamics can be sym
bolized by the reactions

AB↔BA with rate G̃10
015G̃01

10.0,

BB→BA, andBB→AB with rate G̃00
015G̃00

10.0,
-
-
e
f

n-
in

r
e
re
-

f

n
tly

r

AB→AA andBA→AA with rate G̃10
115G̃01

11,

AA→AB andAA→BA with rate G̃11
105G̃11

01,

AA→BB with rate G̃11
00. ~65!

This model~RDCIPA! can be obtained from the RDCI mode
via the similarity transformation~58! and ~59!. Imposing
G10

1152G00
10 in Eq. ~60! we get the following reaction rates:

G̃00
105G̃00

015G00
10/r , G̃10

115G̃01
1152G00

10,

G̃11
0052~r 21!G̃01

10,

G̃11
105G̃11

015~22r !G̃01
101~r 21!G̃00

10,

G̃01
105G̃01

105
r 21

2
G̃10

111G10
01. ~66!

For this RDCIPA model, we have three~positive! indepen-
dent parametersr>1, G00

10>0, andG01
10>0. The positivity of

the reaction rates~65! and the physical meaning of the initia
state requires the following constraints:

G̃11
015~22r !G̃01

101~r 21!G̃00
10>0, r>1, 0<r~0!<r .

~67!
3-15
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Thus, for the model RDCIPA~65! described by the reac
tion rates~66! with the restrictions~67!, the density and the
correlation functions can be computed from the results of
model RDCI according to Eq.~62!, for homogeneous~but
random! initial states described by Eq.~61!.

VIII. PROPAGATION OF A WAVE FRONT
AND THE FISHER WAVES

At the end of Sec. II, we have stated that some react
diffusion models are described at the mean-field level an
the continuum limit by nonlinear partial differential equatio
th

ai

06612
e

-
in

of the Fisher type~5! @3#. In this section we show that fo
some choices of the parameters~reaction rates! the mean-
field formulation of the models BCBD and RDCI gives ris
to Fisher-type equations. Then, from the results obtained
Secs. V and VI, we study the propagation of the wave fr
from a microscopic point of view~in so doing, the correla-
tion between particles is taken into account exactly!. We
show that the scenario predicted by Fisher’s theory fails
one spatial dimension for the models under consideration
this whole section, we adopt the same notation as that in
duced at the end of the Sec. II.

~i! For the BCBD model, setting
fBCBD[
~2G00

101G10
002G10

11!1A~G10
11!21~G10

00!214G00
10G11

1022G10
11G10

00

2@~G10
001G00

10!2~G10
111G11

10!#
, ~68!
eld
o-
ute

the
s
as

con-
-

act
ve
n-
and with the additional definitions, we have

k1
BCBD[2A~G10

11!21~G10
00!214G00

10G11
1022G10

11G10
00.0

andk2
BCBD[2@G10

111G11
102~G10

001G00
10!#.0,

~69!

where the reaction rates appearing in Eqs.~68! and ~69! are
those defined in Eq.~39!.

~ii ! For the RDCI model, setting

fRDCI[
2G00

102G10
111A~G10

11!214G00
10G01

10

2@G00
102~G10

011G10
11!#

~70!

and with the additional definitions, we have

k1
RDCI[2A~G10

11!214G00
10G01

10.0 and

k2
RDCI[2@~G01

101G10
11!2G00

10#.0. ~71!

The reaction rates appearing in Eqs.~70! and ~71! are
those introduced in Sec. VI.

Under the conditions~i! and ~ii !, at the continuum mean
field level, we have for the BCBD and RDCI models wi
r̃MF

l (x,t)[rMF
l (x,t)2f l , where l 5BCBD and RDCI,

equations of motion that are Fisher’s equations:

]

]t
r̃MF

l ~x,t !5
k2

l

2

]2

]x2
r̃MF

l ~x,t !1k1
l r̃MF

l ~x,t !

2k2
l @ r̃MF

l ~x,t !#2. ~72!

AssumingL to be even and relabeling the sites of the ch
according to the shift:x→x2L/2, we consider an initial in-
homogeneous configuration with

^nx~0!&5H ^nx~`!& if xP@2L/2,0#

0 otherwise.
~73!
n

We want now to compare the prediction of the mean-fi
theory with the results obtained directly from the micr
scopic results derived in Secs. V and VI and thus comp
the time-dependent positionX(t) of the wave front and its
time-dependent widthw(t). This is done according to the
formulas@14#

X~ t !5 (
x52L/2

L/2
^nx~ t !&

^nx~`!&
2

L

2
and

w~ t !252 (
x52L/2

L/2
x^nx~ t !&

^nx~`!&
2S L

2D 2

2X~ t !2. ~74!

With the help of Eqs.~42! and ~52!, and denoting with
ql ,d l ,g l ,El* the quantities related to the modell
P~BCBD,RDCI! and defined~computed! in Secs. V and VI,
we obtain in the long-time regime (El* d l1g l)t@1 where the
time scales ast}L2,

Xl~ t !5A2ul~El* d l1g l !t@11O~e2(1/2)AL2/ul !# ~75!

and

wl~ t !5Aul~El* d l1g l !t@11O~e2(1/2)AL2/ul !#, ~76!

where we have introduced the parameterul[L2/2(El* d l

1g l)t5O(1).
From these exact results, it appears that the location of

wave front moves asAt. Moreover, in contrast to Fisher’
mean-field theory, the width of the wave front broadens
At. These results, which have also been observed in the
tinuum limit for the one-dimensional reversible diffusion
coagulation~without input! model @14#, confirm that in one
spatial dimension the mean-field Fisher’s picture fails. In f
Riordan et al. @14# have argued on the basis of extensi
numerical computations for the reversible diffusio
coagulation~without input! model that in higher dimension
3-16
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(>4) the latter model is in agreement with Fisher’s mea
field predictions that the width of the wave front does n
broaden. Recently other authors who studied the same m
as Riordanet al. ~in dimensionsd.1) came to completely
different conclusions@22#.

Furthermore, forr̃MF
l , Fisher’s equation admits two~ho-

mogeneous! stationary states, namely,r̃MF
l (`)5k1

l /k2
l ,

which is linearly stable@15# and r̃MF
l (`)50, which is lin-

early unstable@15#. This implies that at mean-field level, w
would have for the stationary density,rMF

l (`)5 r̃MF
l (`)

1f l , which corresponds to two possible steady sta
rMF

l (`)5k1
l /k2

l 1f l , rMF
l (`)5f l . However, from the ex-

act expressions of the stationary density~40! and ~50!, we
know that the models under consideration admit uniq
steady states that do not coincide with the mean-field pre
tion.

IX. SUMMARY AND CONCLUSION

In this work we have extended the conventional IPD
method. We introduced a string function, which is a natu
generalization of the empty-interval function employed
the IPDF method. We derived the~five! constraints for the
equations of motion to close@~see Eqs.~8! and ~9!#. We
solved the equation of motion of this string function on
periodic and finite lattice for the general form of a class
models that cannot be mapped onto free-fermion syst
and that so far~to our knowledge! have been poorly under
stood@see Eq.~24!#. Then we specifically studied two mod
els: The first one, which is a model with branching, coag
lation, birth, and death processes~the BCBD model!, can be
viewed as a generalization of the voter model and/or as
epidemic model. The BCBD model is an example of a mo
that cannot be solved directly by the traditional IPD
method. For this model, under certain restrictions on the
action rates@see Eq.~39!#, the density, the noninstantaneo
two-point, as well as the exact nearest neighbor~instanta-
neous! correlation functions have been analyzed: the ste
states@see Eqs.~40! and ~41!# as well as the dynamical ap
proach towards the latter have been computed exactly@see
Eqs.~43! and~44!#. In particular the relaxational spectrum a
well as the the inverse of the relaxation time have been
tained@see Eq.~42!#. A similar analysis has been performe
for a reversible diffusion-coagulation model with input
particles model. The latter~with the usual restriction that th
coagulation rate coincides with the diffusion one! can be
e,

-

,
.

06612
-
t
del

s:

e
c-

l

f
s

-

n
l

-

y

b-

studied with help of the traditional IPDF method~the string
function then reduces to the empty-interval function!. In ad-
dition to the above-mentioned quantities, which we we
able to compute also for the RDCI model, we calculated
stationary interparticle function@see Eq.~56!#.

On the basis of the exact results, we have developed
approximative recursive scheme that allows to compute
~other! instantaneous two-point correlation functions@see Eq.
~36!#.

Studying these models, we observed that the latter is c
acterized by a translationally invariant stationary distributi
for which, contrary to what happens to free-fermion system
correlations are present:^nxnx11&(`)Þ@^nx(`)&#2.

Later we studied the solution of the RDCI model and
implications on other systems related via similarity transf
mations. In particular, we considered a class of similar
transformations@see Eqs.~58! and ~59!# that transforms the
conventional empty-interval function into a more gene
string function. In so doing we saw that it is possible to m
the RDCI model onto the BCBD one , which turns out to
solvable @via the similarity transformation~58! and ~59!#
with the same constraints encountered in Sec. V. We th
fore conclude that the approaches of Secs. V and VII
solving the BCBD model are equivalent. However, it has
be noticed that working with the generalized string functi
as in Sec. V gives naturally access to the solution of
BCBD model without requiring the solution of anothe
~RDCI! model.

We also have identified a model of reversible diffusi
coagulation with particles input and pair annihilatio
~RDCIPA!, which can be mapped, for some choices of t
reaction rates@see Eqs.~66! and~67!#, onto the RDCI model.
For this RDCIPA model all the quantities previously com
puted for the RDCI can be immediately obtained via t
similarity transformation@see Eq.~62!#.

Finally we observed that on some parameter manifold,
mean-field approximation of the BCBD and RDCI mode
are described~in the continuum limit! by the so-called Fishe
equations, which predict that an inhomogeneous initial c
figuration will evolve without broadening of the wave fron
in the density of particles. Computing the width of the wa
front, which broadens asAt @see Eq.~76!#, we show that the
Fisher’s mean-field description fails in one dimension. A
other failure of the mean-field theory is observed when o
compares the mean-field predictions for the steady state
the density with the exact results.
s-
al
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@4# G.M. Schütz, J. Stat. Phys.79, 243 ~1995!.
@5# M.D. Grynberg, T.J. Newman, and R.B. Stinchcombe, Ph

Rev. E50, 957~1994!; M.D. Grynberg and R.B. Stinchcombe
Phys. Rev. Lett.74, 1242~1995!; 76, 851~1996!; G.M. Schütz,
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